BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 27446055)

  • 21. Competitive algae biodiesel depends on advances in mass algae cultivation.
    Maroušek J; Maroušková A; Gavurová B; Tuček D; Strunecký O
    Bioresour Technol; 2023 Apr; 374():128802. PubMed ID: 36858122
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biodiesel production from wet microalgae feedstock using sequential wet extraction/transesterification and direct transesterification processes.
    Chen CL; Huang CC; Ho KC; Hsiao PX; Wu MS; Chang JS
    Bioresour Technol; 2015 Oct; 194():179-86. PubMed ID: 26196418
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Involvement of green technology in microalgal biodiesel production.
    Verma S; Kuila A
    Rev Environ Health; 2020 Jun; 35(2):173-188. PubMed ID: 32134737
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Graphene-based catalysts for biodiesel production: Characteristics and performance.
    Nazloo EK; Moheimani NR; Ennaceri H
    Sci Total Environ; 2023 Feb; 859(Pt 1):160000. PubMed ID: 36368383
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A comprehensive review on carbon source effect of microalgae lipid accumulation for biofuel production.
    Ma X; Mi Y; Zhao C; Wei Q
    Sci Total Environ; 2022 Feb; 806(Pt 3):151387. PubMed ID: 34740661
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synergy of biofuel production with waste remediation along with value-added co-products recovery through microalgae cultivation: A review of membrane-integrated green approach.
    Kumar R; Ghosh AK; Pal P
    Sci Total Environ; 2020 Jan; 698():134169. PubMed ID: 31505365
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microalgae as sustainable renewable energy feedstock for biofuel production.
    Medipally SR; Yusoff FM; Banerjee S; Shariff M
    Biomed Res Int; 2015; 2015():519513. PubMed ID: 25874216
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microalgae as a raw material for biofuels production.
    Gouveia L; Oliveira AC
    J Ind Microbiol Biotechnol; 2009 Feb; 36(2):269-74. PubMed ID: 18982369
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Progress on lipid extraction from wet algal biomass for biodiesel production.
    Ghasemi Naghdi F; González González LM; Chan W; Schenk PM
    Microb Biotechnol; 2016 Nov; 9(6):718-726. PubMed ID: 27194507
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Various potential techniques to reduce the water footprint of microalgal biomass production for biofuel-A review.
    Pugazhendhi A; Nagappan S; Bhosale RR; Tsai PC; Natarajan S; Devendran S; Al-Haj L; Ponnusamy VK; Kumar G
    Sci Total Environ; 2020 Dec; 749():142218. PubMed ID: 33370912
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Challenges in microalgal biofuel production: A perspective on techno economic feasibility under biorefinery stratagem.
    Venkata Subhash G; Rajvanshi M; Raja Krishna Kumar G; Shankar Sagaram U; Prasad V; Govindachary S; Dasgupta S
    Bioresour Technol; 2022 Jan; 343():126155. PubMed ID: 34673195
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microalgae as a solution of third world energy crisis for biofuels production from wastewater toward carbon neutrality: An updated review.
    Li S; Li X; Ho SH
    Chemosphere; 2022 Mar; 291(Pt 1):132863. PubMed ID: 34774903
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Screening of freshwater and seawater microalgae strains in fully controlled photobioreactors for biodiesel production.
    Taleb A; Kandilian R; Touchard R; Montalescot V; Rinaldi T; Taha S; Takache H; Marchal L; Legrand J; Pruvost J
    Bioresour Technol; 2016 Oct; 218():480-90. PubMed ID: 27394994
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nutrient Deficiency and an Algicidal Bacterium Improved the Lipid Profiles of a Novel Promising Oleaginous Dinoflagellate,
    Gui J; Chen S; Luo G; Wu Z; Fan Y; Yao L; Xu H
    Appl Environ Microbiol; 2021 Sep; 87(19):e0115921. PubMed ID: 34319787
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CO
    Ameen F; Dawoud T; Alabdullatif J; Arif I
    Environ Res; 2023 Mar; 221():115251. PubMed ID: 36657592
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new lipid-rich microalga Scenedesmus sp. strain R-16 isolated using Nile red staining: effects of carbon and nitrogen sources and initial pH on the biomass and lipid production.
    Ren HY; Liu BF; Ma C; Zhao L; Ren NQ
    Biotechnol Biofuels; 2013 Oct; 6(1):143. PubMed ID: 24093331
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel microalgal lipid extraction method using biodiesel (fatty acid methyl esters) as an extractant.
    Huang WC; Park CW; Kim JD
    Bioresour Technol; 2017 Feb; 226():94-98. PubMed ID: 27992796
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolic Engineering of Microalgal Based Biofuel Production: Prospects and Challenges.
    Banerjee C; Dubey KK; Shukla P
    Front Microbiol; 2016; 7():432. PubMed ID: 27065986
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A comprehensive review on cultivation and harvesting of microalgae for biodiesel production: Environmental pollution control and future directions.
    Yin Z; Zhu L; Li S; Hu T; Chu R; Mo F; Hu D; Liu C; Li B
    Bioresour Technol; 2020 Apr; 301():122804. PubMed ID: 31982297
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cost-effective biodiesel production from wet microalgal biomass by a novel two-step enzymatic process.
    He Y; Wu T; Wang X; Chen B; Chen F
    Bioresour Technol; 2018 Nov; 268():583-591. PubMed ID: 30138870
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.