BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 27446096)

  • 1. Copper-Containing Amine Oxidases and FAD-Dependent Polyamine Oxidases Are Key Players in Plant Tissue Differentiation and Organ Development.
    Tavladoraki P; Cona A; Angelini R
    Front Plant Sci; 2016; 7():824. PubMed ID: 27446096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell Wall Amine Oxidases: New Players in Root Xylem Differentiation under Stress Conditions.
    Ghuge SA; Tisi A; Carucci A; Rodrigues-Pousada RA; Franchi S; Tavladoraki P; Angelini R; Cona A
    Plants (Basel); 2015 Jul; 4(3):489-504. PubMed ID: 27135338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyamine Catabolism in Plants: A Universal Process With Diverse Functions.
    Wang W; Paschalidis K; Feng JC; Song J; Liu JH
    Front Plant Sci; 2019; 10():561. PubMed ID: 31134113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper-containing amine oxidases contribute to terminal polyamine oxidation in peroxisomes and apoplast of Arabidopsis thaliana.
    Planas-Portell J; Gallart M; Tiburcio AF; Altabella T
    BMC Plant Biol; 2013 Aug; 13():109. PubMed ID: 23915037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant amine oxidases "on the move": an update.
    Angelini R; Cona A; Federico R; Fincato P; Tavladoraki P; Tisi A
    Plant Physiol Biochem; 2010 Jul; 48(7):560-4. PubMed ID: 20219383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of Copper Amine Oxidase Activity in Plant Tissues.
    Angelini R; Cona A; Tavladoraki P
    Methods Mol Biol; 2018; 1694():129-139. PubMed ID: 29080163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyamine Oxidases Play Various Roles in Plant Development and Abiotic Stress Tolerance.
    Yu Z; Jia D; Liu T
    Plants (Basel); 2019 Jun; 8(6):. PubMed ID: 31234345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Does polyamine catabolism influence root development and xylem differentiation under stress conditions?
    Tisi A; Angelini R; Cona A
    Plant Signal Behav; 2011 Nov; 6(11):1844-7. PubMed ID: 22057326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A small molecule that mimics the metabolic activity of copper-containing amine oxidases (CuAOs) toward physiological mono- and polyamines.
    Largeron M; Fleury MB; Strolin Benedetti M
    Org Biomol Chem; 2010 Aug; 8(16):3796-800. PubMed ID: 20574584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant Copper Amine Oxidases: Key Players in Hormone Signaling Leading to Stress-Induced Phenotypic Plasticity.
    Fraudentali I; Rodrigues-Pousada RA; Angelini R; Ghuge SA; Cona A
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34066274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functions of amine oxidases in plant development and defence.
    Cona A; Rea G; Angelini R; Federico R; Tavladoraki P
    Trends Plant Sci; 2006 Feb; 11(2):80-8. PubMed ID: 16406305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wound healing in plants: Cooperation of copper amine oxidase and flavin-containing polyamine oxidase.
    Tisi A; Angelini R; Cona A
    Plant Signal Behav; 2008 Mar; 3(3):204-6. PubMed ID: 19704660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition and oxygen activation in copper amine oxidases.
    Shepard EM; Dooley DM
    Acc Chem Res; 2015 May; 48(5):1218-26. PubMed ID: 25897668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FAD-containing polyamine oxidases: a timely challenge for researchers in biochemistry and physiology of plants.
    Sebela M; Radová A; Angelini R; Tavladoraki P; Frébort I; Pec P
    Plant Sci; 2001 Jan; 160(2):197-207. PubMed ID: 11164591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constitutively and highly expressed Oryza sativa polyamine oxidases localize in peroxisomes and catalyze polyamine back conversion.
    Ono Y; Kim DW; Watanabe K; Sasaki A; Niitsu M; Berberich T; Kusano T; Takahashi Y
    Amino Acids; 2012 Feb; 42(2-3):867-76. PubMed ID: 21796433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoparticle strategies for cancer therapeutics: Nucleic acids, polyamines, bovine serum amine oxidase and iron oxide nanoparticles (Review).
    Agostinelli E; Vianello F; Magliulo G; Thomas T; Thomas TJ
    Int J Oncol; 2015 Jan; 46(1):5-16. PubMed ID: 25333509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The biological functions of polyamine oxidation products by amine oxidases: perspectives of clinical applications.
    Agostinelli E; Arancia G; Vedova LD; Belli F; Marra M; Salvi M; Toninello A
    Amino Acids; 2004 Dec; 27(3-4):347-58. PubMed ID: 15592759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyamine catabolism: target for antiproliferative therapies in animals and stress tolerance strategies in plants.
    Tavladoraki P; Cona A; Federico R; Tempera G; Viceconte N; Saccoccio S; Battaglia V; Toninello A; Agostinelli E
    Amino Acids; 2012 Feb; 42(2-3):411-26. PubMed ID: 21874532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. POLYAMINE OXIDASE2 of Arabidopsis contributes to ABA mediated plant developmental processes.
    Wimalasekera R; Schaarschmidt F; Angelini R; Cona A; Tavladoraki P; Scherer GF
    Plant Physiol Biochem; 2015 Nov; 96():231-40. PubMed ID: 26310141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amine oxidases of the quinoproteins family: their implication in the metabolic oxidation of xenobiotics.
    Largeron M
    Ann Pharm Fr; 2011 Jan; 69(1):53-61. PubMed ID: 21296218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.