BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 27446122)

  • 1. Quantitative Proteomic and Transcriptomic Study on Autotetraploid Paulownia and Its Diploid Parent Reveal Key Metabolic Processes Associated with Paulownia Autotetraploidization.
    Dong Y; Deng M; Zhao Z; Fan G
    Front Plant Sci; 2016; 7():892. PubMed ID: 27446122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative proteomic analysis of autotetraploid and diploid
    Yan L; Fan G; Deng M; Zhao Z; Dong Y; Li Y
    Physiol Mol Biol Plants; 2017 Jul; 23(3):605-617. PubMed ID: 28878499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative proteomic study on Brassica hexaploid and its parents provides new insights into the effects of polyploidization.
    Shen Y; Zhang Y; Zou J; Meng J; Wang J
    J Proteomics; 2015 Jan; 112():274-84. PubMed ID: 25463267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of genes related to the phenotypic variations of a synthesized Paulownia (Paulownia tomentosaƗPaulownia fortunei) autotetraploid.
    Li Y; Fan G; Dong Y; Zhao Z; Deng M; Cao X; Xu E; Niu S
    Gene; 2014 Dec; 553(2):75-83. PubMed ID: 25300252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic divergence in Arabidopsis autopolyploids and allopolyploids and their progenitors.
    Ng DW; Zhang C; Miller M; Shen Z; Briggs SP; Chen ZJ
    Heredity (Edinb); 2012 Apr; 108(4):419-30. PubMed ID: 22009271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implications of polyploidy events on the phenotype, microstructure, and proteome of Paulownia australis.
    Wang Z; Fan G; Dong Y; Zhai X; Deng M; Zhao Z; Liu W; Cao Y
    PLoS One; 2017; 12(3):e0172633. PubMed ID: 28273106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drought stress-induced changes of microRNAs in diploid and autotetraploid
    Cao X; Fan G; Cao L; Deng M; Zhao Z; Niu S; Wang Z; Wang Y
    Genes Genomics; 2017; 39(1):77-86. PubMed ID: 28090264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome analysis of the variations between autotetraploid Paulownia tomentosa and its diploid using high-throughput sequencing.
    Fan G; Wang L; Deng M; Niu S; Zhao Z; Xu E; Cao X; Zhang X
    Mol Genet Genomics; 2015 Aug; 290(4):1627-38. PubMed ID: 25773315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide expression analysis of salt-stressed diploid and autotetraploid Paulownia tomentosa.
    Zhao Z; Li Y; Liu H; Zhai X; Deng M; Dong Y; Fan G
    PLoS One; 2017; 12(10):e0185455. PubMed ID: 29049296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptome-wide profiling and expression analysis of diploid and autotetraploid Paulownia tomentosa Ɨ Paulownia fortunei under drought stress.
    Xu E; Fan G; Niu S; Zhao Z; Deng M; Dong Y
    PLoS One; 2014; 9(11):e113313. PubMed ID: 25405758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteome Profiling of Paulownia Seedlings Infected with Phytoplasma.
    Cao X; Fan G; Dong Y; Zhao Z; Deng M; Wang Z; Liu W
    Front Plant Sci; 2017; 8():342. PubMed ID: 28344590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autotetraploid rice methylome analysis reveals methylation variation of transposable elements and their effects on gene expression.
    Zhang J; Liu Y; Xia EH; Yao QY; Liu XD; Gao LZ
    Proc Natl Acad Sci U S A; 2015 Dec; 112(50):E7022-9. PubMed ID: 26621743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in Transcript Related to Osmosis and Intracellular Ion Homeostasis in Paulownia tomentosa under Salt Stress.
    Fan G; Wang L; Deng M; Zhao Z; Dong Y; Zhang X; Li Y
    Front Plant Sci; 2016; 7():384. PubMed ID: 27066034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissecting the proteome dynamics of the salt stress induced changes in the leaf of diploid and autotetraploid Paulownia fortunei.
    Deng M; Dong Y; Zhao Z; Li Y; Fan G
    PLoS One; 2017; 12(7):e0181937. PubMed ID: 28750031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of the transcriptomes between diploid and autotetraploid
    Wang Z; Zhao Z; Fan G; Dong Y; Deng M; Xu E; Zhai X; Cao H
    Physiol Mol Biol Plants; 2019 Jan; 25(1):1-11. PubMed ID: 30804626
    [No Abstract]   [Full Text] [Related]  

  • 16. Cytological and proteomic analyses of floral buds reveal an altered atlas of meiosis in autopolyploid
    Yang Y; Wei F; Braynen J; Wei X; Tian B; Shi G; Cao G; Yuan J; Zhang X
    Cell Biosci; 2019; 9():49. PubMed ID: 31236208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The creation of autotetraploid provides insights into critical features of DNA methylome changes after genome doubling in water spinach (
    Hao Y; Su X; Li W; Li L; Zhang Y; Mumtaz MA; Shu H; Cheng S; Zhu G; Wang Z
    Front Plant Sci; 2023; 14():1155531. PubMed ID: 37123819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential transcriptome analysis between Paulownia fortunei and its synthesized autopolyploid.
    Zhang X; Deng M; Fan G
    Int J Mol Sci; 2014 Mar; 15(3):5079-93. PubMed ID: 24663058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of leaf transcriptomes of cassava "Xinxuan 048" diploid and autotetraploid plants.
    Yin L; Qu J; Zhou H; Shang X; Fang H; Lu J; Yan H
    Genes Genomics; 2018 Sep; 40(9):927-935. PubMed ID: 30155710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screening and analysis on the differentially expression genes between diploid and autotetraploid watermelon by using of digital gene expression profile.
    Long YL; Qiao F; Jiang XF; Cong HQ; Sun ML; Xu ZJ
    Braz J Biol; 2019; 79(2):180-190. PubMed ID: 29924132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.