These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 27446675)

  • 1. Measuring membrane association and protein diffusion within membranes with supercritical angle fluorescence microscopy.
    Ma Y; Benda A; Nicovich PR; Gaus K
    Biomed Opt Express; 2016 Apr; 7(4):1561-76. PubMed ID: 27446675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence correlation spectroscopy with a total internal reflection fluorescence STED microscope (TIRF-STED-FCS).
    Leutenegger M; Ringemann C; Lasser T; Hell SW; Eggeling C
    Opt Express; 2012 Feb; 20(5):5243-63. PubMed ID: 22418331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous Surface-Near and Solution Fluorescence Correlation Spectroscopy.
    Winterflood CM; Seeger S
    J Fluoresc; 2016 May; 26(3):753-6. PubMed ID: 27001472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tackling sample-related artifacts in membrane FCS using parallel SAF and UAF detection.
    Winterflood CM; Ruckstuhl T; Reynolds NP; Seeger S
    Chemphyschem; 2012 Nov; 13(16):3655-60. PubMed ID: 22945425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supercritical angle fluorescence for enhanced axial sectioning in STED microscopy.
    Sivankutty S; Coto Hernández I; Bourg N; Dupuis G; Lévêque-Fort S
    Methods; 2020 Mar; 174():20-26. PubMed ID: 30946895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eliminating unwanted far-field excitation in objective-type TIRF. Part II. combined evanescent-wave excitation and supercritical-angle fluorescence detection improves optical sectioning.
    Brunstein M; Hérault K; Oheim M
    Biophys J; 2014 Mar; 106(5):1044-56. PubMed ID: 24606929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid Diffusion in Supported Lipid Bilayers: A Comparison between Line-Scanning Fluorescence Correlation Spectroscopy and Single-Particle Tracking.
    Rose M; Hirmiz N; Moran-Mirabal JM; Fradin C
    Membranes (Basel); 2015 Nov; 5(4):702-21. PubMed ID: 26610279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supercritical angle fluorescence correlation spectroscopy.
    Ries J; Ruckstuhl T; Verdes D; Schwille P
    Biophys J; 2008 Jan; 94(1):221-9. PubMed ID: 17827221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lateral mobility of membrane-binding proteins in living cells measured by total internal reflection fluorescence correlation spectroscopy.
    Ohsugi Y; Saito K; Tamura M; Kinjo M
    Biophys J; 2006 Nov; 91(9):3456-64. PubMed ID: 16891361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scanning fluorescence correlation spectroscopy in model membrane systems.
    Unsay JD; García-Sáez AJ
    Methods Mol Biol; 2013; 1033():185-205. PubMed ID: 23996179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supercritical Angle Fluorescence Microscopy and Spectroscopy.
    Oheim M; Salomon A; Brunstein M
    Biophys J; 2020 May; 118(10):2339-2348. PubMed ID: 32348720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial-temporal studies of membrane dynamics: scanning fluorescence correlation spectroscopy (SFCS).
    Ruan Q; Cheng MA; Levi M; Gratton E; Mantulin WW
    Biophys J; 2004 Aug; 87(2):1260-7. PubMed ID: 15298928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatiotemporal mapping of diffusion dynamics and organization in plasma membranes.
    Bag N; Ng XW; Sankaran J; Wohland T
    Methods Appl Fluoresc; 2016 Jul; 4(3):034003. PubMed ID: 28355150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal Detection of Fusion Pore Dynamics Using Polarized Total Internal Reflection Fluorescence Microscopy.
    Nikolaus J; Hancock K; Tsemperouli M; Baddeley D; Karatekin E
    Front Mol Biosci; 2021; 8():740408. PubMed ID: 34859048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale fluorescence correlation spectroscopy on intact living cell membranes with NSOM probes.
    Manzo C; van Zanten TS; Garcia-Parajo MF
    Biophys J; 2011 Jan; 100(2):L8-10. PubMed ID: 21244822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Total internal reflection fluorescence correlation spectroscopy (TIR-FCS) with low background and high count-rate per molecule.
    Hassler K; Leutenegger M; Rigler P; Rao R; Rigler R; Gösch M; Lasser T
    Opt Express; 2005 Sep; 13(19):7415-23. PubMed ID: 19498766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variations in Plasma Membrane Topography Can Explain Heterogenous Diffusion Coefficients Obtained by Fluorescence Correlation Spectroscopy.
    Gesper A; Wennmalm S; Hagemann P; Eriksson SG; Happel P; Parmryd I
    Front Cell Dev Biol; 2020; 8():767. PubMed ID: 32903922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular diffusion measurement in lipid bilayers over wide concentration ranges: a comparative study.
    Guo L; Har JY; Sankaran J; Hong Y; Kannan B; Wohland T
    Chemphyschem; 2008 Apr; 9(5):721-8. PubMed ID: 18338419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size dependence of protein diffusion very close to membrane surfaces: measurement by total internal reflection with fluorescence correlation spectroscopy.
    Pero JK; Haas EM; Thompson NL
    J Phys Chem B; 2006 Jun; 110(22):10910-8. PubMed ID: 16771344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. To Hop or not to Hop: Exceptions in the FCS Diffusion Law.
    Gupta A; Phang IY; Wohland T
    Biophys J; 2020 May; 118(10):2434-2447. PubMed ID: 32333863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.