These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 27446699)

  • 21. Effects of temperature, CO2/O2 concentrations and light intensity on cellular multiplication of microalgae, Euglena gracilis.
    Kitaya Y; Azuma H; Kiyota M
    Adv Space Res; 2005; 35(9):1584-8. PubMed ID: 16175686
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On-chip light-sheet fluorescence imaging flow cytometry at a high flow speed of 1 m/s.
    Miura T; Mikami H; Isozaki A; Ito T; Ozeki Y; Goda K
    Biomed Opt Express; 2018 Jul; 9(7):3424-3433. PubMed ID: 29984107
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Smartphone Imaging Flow Cytometry for High-Throughput Single-Cell Analysis.
    Aslan MK; Ding Y; Stavrakis S; deMello AJ
    Anal Chem; 2023 Oct; 95(39):14526-14532. PubMed ID: 37733469
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrafast Microfluidic Cellular Imaging by Optical Time-Stretch.
    Lau AK; Wong TT; Shum HC; Wong KK; Tsia KK
    Methods Mol Biol; 2016; 1389():23-45. PubMed ID: 27460236
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Square microchannel enables to focus and orient ellipsoidal Euglena gracilis cells by two-dimensional acoustic standing wave.
    Park S; Lee S; Kim HS; Choi HJ; Jeong OC; Lin R; Cho Y; Lee MH
    Mikrochim Acta; 2022 Aug; 189(9):331. PubMed ID: 35969307
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-throughput time-stretch imaging flow cytometry for multi-class classification of phytoplankton.
    Lai QT; Lee KC; Tang AH; Wong KK; So HK; Tsia KK
    Opt Express; 2016 Dec; 24(25):28170-28184. PubMed ID: 27958529
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An integrated microfluidic device for the high-throughput screening of microalgal cell culture conditions that induce high growth rate and lipid content.
    Bae S; Kim CW; Choi JS; Yang JW; Seo TS
    Anal Bioanal Chem; 2013 Nov; 405(29):9365-74. PubMed ID: 24170268
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Real-time Image Processing for Microscopy-based Label-free Imaging Flow Cytometry in a Microfluidic Chip.
    Heo YJ; Lee D; Kang J; Lee K; Chung WK
    Sci Rep; 2017 Sep; 7(1):11651. PubMed ID: 28912565
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regeneration of the Eyespot and Flagellum in
    Ozasa K; Kang H; Song S; Tamaki S; Shinomura T; Maeda M
    Plants (Basel); 2021 Sep; 10(10):. PubMed ID: 34685814
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Label-free light-sheet microfluidic cytometry for the automatic identification of senescent cells.
    Lin M; Liu Q; Liu C; Qiao X; Shao C; Su X
    Biomed Opt Express; 2018 Apr; 9(4):1692-1703. PubMed ID: 29675311
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rapid and Accurate Quantification of Paramylon Produced from
    Kim JY; Oh JJ; Kim DH; Park J; Kim HS; Choi YE
    J Agric Food Chem; 2020 Jan; 68(1):402-408. PubMed ID: 31809034
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Amino acids as possible alternative nitrogen source for growth of Euglena gracilis Z in life support systems.
    Richter PR; Liu Y; An Y; Li X; Nasir A; Strauch SM; Becker I; Krüger J; Schuster M; Ntefidou M; Daiker V; Haag FW; Aiach A; Lebert M
    Life Sci Space Res (Amst); 2015 Jan; 4():1-5. PubMed ID: 26177616
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Selection and characterization of Euglena anabaena var. minor as a new candidate Euglena species for industrial application.
    Suzuki K; Mitra S; Iwata O; Ishikawa T; Kato S; Yamada K
    Biosci Biotechnol Biochem; 2015; 79(10):1730-6. PubMed ID: 25988946
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transient freezing behavior in photophobic responses of Euglena gracilis investigated in a microfluidic device.
    Ozasa K; Lee J; Song S; Maeda M
    Plant Cell Physiol; 2014 Oct; 55(10):1704-12. PubMed ID: 25074906
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of CO2 and O2 concentrations and light intensity on growth of microalgae (Euglena gracilis) in CELSS.
    Kitaya Y; Kibe S; Oguchi M; Tanaka H; Miyatake K; Nakano Y
    Life Support Biosph Sci; 1998; 5(2):243-7. PubMed ID: 11541682
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Size-based sorting of hydrogel droplets using inertial microfluidics.
    Li M; van Zee M; Goda K; Di Carlo D
    Lab Chip; 2018 Aug; 18(17):2575-2582. PubMed ID: 30046787
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing.
    Lin SC; Yen PW; Peng CC; Tung YC
    Lab Chip; 2012 Sep; 12(17):3135-41. PubMed ID: 22763751
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The application of Fresnel zone plate based projection in optofluidic microscopy.
    Wu J; Cui X; Lee LM; Yang C
    Opt Express; 2008 Sep; 16(20):15595-602. PubMed ID: 18825198
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Webcam-based flow cytometer using wide-field imaging for low cell number detection at high throughput.
    Balsam J; Bruck HA; Rasooly A
    Analyst; 2014 Sep; 139(17):4322-9. PubMed ID: 24995370
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acoustofluidic harvesting of microalgae on a single chip.
    Park JW; Kim SH; Ito T; Fujii T; Kim SY; Laurell T; Lee SW; Goda K
    Biomicrofluidics; 2016 May; 10(3):034119. PubMed ID: 27462380
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.