These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 27446705)

  • 1. Simultaneous assessment of red blood cell aggregation and oxygen saturation under pulsatile flow using high-frequency photoacoustics.
    Bok TH; Hysi E; Kolios MC
    Biomed Opt Express; 2016 Jul; 7(7):2769-80. PubMed ID: 27446705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo photoacoustic assessment of the oxygen saturation changes in the human radial artery: a preliminary study associated with age.
    Bok T; Hysi E; Kolios MC
    J Biomed Opt; 2021 Mar; 26(3):. PubMed ID: 33754541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro photoacoustic spectroscopy of pulsatile blood flow: Probing the interrelationship between red blood cell aggregation and oxygen saturation.
    Bok TH; Hysi E; Kolios MC
    J Biophotonics; 2018 Aug; 11(8):e201700300. PubMed ID: 29431290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Depletion-model-based numerical simulation of the kinetics of red blood cell aggregation under sinusoidal pulsatile flow.
    Lee CA; Kong Q; Paeng DG
    Biorheology; 2018 Jul; 1(0):1-14. PubMed ID: 30010095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between velocity profile and ultrasound echogenicity in pulsatile blood flows.
    Yeom E; Lee SJ
    Clin Hemorheol Microcirc; 2015; 59(3):197-209. PubMed ID: 24002117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility of photoacoustic imaging for the non-invasive quality management of stored blood bags.
    Pinto RN; Hysi E; Bagga K; Sebastian JA; Douplik A; Acker JP; Kolios MC
    Vox Sang; 2019 Oct; 114(7):701-710. PubMed ID: 31392743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical simulation of spatiotemporal red blood cell aggregation under sinusoidal pulsatile flow.
    Lee CA; Paeng DG
    Sci Rep; 2021 May; 11(1):9977. PubMed ID: 33976299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The "black hole" phenomenon in ultrasonic backscattering measurement under pulsatile flow with porcine whole blood in a rigid tube.
    Cao PJ; Paeng DG; Shung KK
    Biorheology; 2001; 38(1):15-26. PubMed ID: 11381162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Doppler power variation from porcine blood under steady and pulsatile flow.
    Paeng DG; Cao PJ; Shung KK
    Ultrasound Med Biol; 2001 Sep; 27(9):1245-54. PubMed ID: 11597366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the use of photoacoustics to detect red blood cell aggregation.
    Hysi E; Saha RK; Kolios MC
    Biomed Opt Express; 2012 Sep; 3(9):2326-38. PubMed ID: 23024924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From Experiments to Simulation: Shear-Induced Responses of Red Blood Cells to Different Oxygen Saturation Levels.
    Ugurel E; Piskin S; Aksu AC; Eser A; Yalcin O
    Front Physiol; 2019; 10():1559. PubMed ID: 32038272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclic variations of high-frequency ultrasonic backscattering from blood under pulsatile flow.
    Huang CC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Aug; 56(8):1677-88. PubMed ID: 19686983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution.
    Laufer J; Elwell C; Delpy D; Beard P
    Phys Med Biol; 2005 Sep; 50(18):4409-28. PubMed ID: 16148401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative blood oxygen saturation imaging using combined photoacoustics and acousto-optics.
    Hussain A; Petersen W; Staley J; Hondebrink E; Steenbergen W
    Opt Lett; 2016 Apr; 41(8):1720-3. PubMed ID: 27082328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Effect of Pulsatile Versus Nonpulsatile Blood Flow on Viscoelasticity and Red Blood Cell Aggregation in Extracorporeal Circulation.
    Ahn CB; Kang YJ; Kim MG; Yang S; Lim CH; Son HS; Kim JS; Lee SY; Son KH; Sun K
    Korean J Thorac Cardiovasc Surg; 2016 Jun; 49(3):145-50. PubMed ID: 27298790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wavelength-modulated differential photoacoustic radar imager (WM-DPARI): accurate monitoring of absolute hemoglobin oxygen saturation.
    Choi SS; Lashkari B; Dovlo E; Mandelis A
    Biomed Opt Express; 2016 Jul; 7(7):2586-96. PubMed ID: 27446691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoacoustic-based sO
    Mitcham T; Taghavi H; Long J; Wood C; Fuentes D; Stefan W; Ward J; Bouchard R
    Photoacoustics; 2017 Sep; 7():47-56. PubMed ID: 28794990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluence-matching technique using photoacoustic radiofrequency spectra for improving estimates of oxygen saturation.
    Fadhel MN; Hysi E; Assi H; Kolios MC
    Photoacoustics; 2020 Sep; 19():100182. PubMed ID: 32547922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Speed Modulation of the HeartWare HVAD to Assess In Vitro Hemocompatibility of Pulsatile and Continuous Flow Regimes in a Rotary Blood Pump.
    Horobin JT; Simmonds MJ; Nandakumar D; Gregory SD; Tansley G; Pauls JP; Girnghuber A; Balletti N; Fraser JF
    Artif Organs; 2018 Sep; 42(9):879-890. PubMed ID: 29726019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemodynamic effects of red blood cell aggregation.
    Baskurt OK; Meiselman HJ
    Indian J Exp Biol; 2007 Jan; 45(1):25-31. PubMed ID: 17249324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.