BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 27446753)

  • 1. The Analysis of Particles at Low Accelerating Voltages (≤ 10 kV) With Energy Dispersive X-Ray Spectroscopy (EDS).
    Small JA
    J Res Natl Inst Stand Technol; 2002; 107(6):555-66. PubMed ID: 27446753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative Electron-Excited X-Ray Microanalysis of Borides, Carbides, Nitrides, Oxides, and Fluorides with Scanning Electron Microscopy/Silicon Drift Detector Energy-Dispersive Spectrometry (SEM/SDD-EDS) and NIST DTSA-II.
    Newbury DE; Ritchie NW
    Microsc Microanal; 2015 Oct; 21(5):1327-40. PubMed ID: 26365439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Barriers to Quantitative Electron Probe X-Ray Microanalysis for Low Voltage Scanning Electron Microscopy.
    Newbury DE
    J Res Natl Inst Stand Technol; 2002; 107(6):605-19. PubMed ID: 27446755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advanced mercuric iodide detectors for X-ray microanalysis.
    Warburton WK; Iwanczyk JS
    Scanning Microsc Suppl; 1987; 1():135-50. PubMed ID: 3481104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elemental analysis and fine structure of mitochondrial granules in growth plate chondrocytes studied by electron energy loss spectroscopy and energy dispersive X-ray microanalysis.
    Wroblewski J; Wróblewski R; Mory C; Colliex C
    Scanning Microsc; 1991 Sep; 5(3):885-92; discussion 893-4. PubMed ID: 1808719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On Low Voltage Scanning Electron Microscopy and Chemical Microanalysis.
    Boyes ED
    Microsc Microanal; 2000 Jul; 6(4):307-316. PubMed ID: 10898813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy-dispersive X-ray spectroscopy in a low energy electron microscope.
    Tromp RM
    Ultramicroscopy; 2024 May; 259():113935. PubMed ID: 38330595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Celebrating 40 years of energy dispersive X-ray spectrometry in electron probe microanalysis: a historic and nostalgic look back into the beginnings.
    Keil K; Fitzgerald R; Heinrich KF
    Microsc Microanal; 2009 Dec; 15(6):476-83. PubMed ID: 19804655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mistakes encountered during automatic peak identification in low beam energy X-ray microanalysis.
    Newbury DE
    Scanning; 2007; 29(4):137-51. PubMed ID: 17676629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A practical superconducting-microcalorimeter X-ray spectrometer for beamline and laboratory science.
    Doriese WB; Abbamonte P; Alpert BK; Bennett DA; Denison EV; Fang Y; Fischer DA; Fitzgerald CP; Fowler JW; Gard JD; Hays-Wehle JP; Hilton GC; Jaye C; McChesney JL; Miaja-Avila L; Morgan KM; Joe YI; O'Neil GC; Reintsema CD; Rodolakis F; Schmidt DR; Tatsuno H; Uhlig J; Vale LR; Ullom JN; Swetz DS
    Rev Sci Instrum; 2017 May; 88(5):053108. PubMed ID: 28571411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scanning electron microanalysis and analytical challenges of mapping elements in urban atmospheric particles.
    Conny JM; Norris GA
    Environ Sci Technol; 2011 Sep; 45(17):7380-6. PubMed ID: 21774494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater.
    Chowdhury S; Balasubramanian R
    Adv Colloid Interface Sci; 2014 Feb; 204():35-56. PubMed ID: 24412086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron-Excited X-Ray Microanalysis at Low Beam Energy: Almost Always an Adventure!
    Newbury DE; Ritchie NW
    Microsc Microanal; 2016 Aug; 22(4):735-53. PubMed ID: 27515566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron-excited energy dispersive X-ray spectrometry at high speed and at high resolution: silicon drift detectors and microcalorimeters.
    Newbury DE
    Microsc Microanal; 2006 Dec; 12(6):527-37. PubMed ID: 19830945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microcalorimeter-type energy dispersive X-ray spectrometer for a transmission electron microscope.
    Hara T; Tanaka K; Maehata K; Mitsuda K; Yamasaki NY; Ohsaki M; Watanabe K; Yu X; Ito T; Yamanaka Y
    J Electron Microsc (Tokyo); 2010; 59(1):17-26. PubMed ID: 19717388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-scale 3D characterization of long period stacking ordered structure in Mg-Zn-Gd cast alloys.
    Ishida M; Yoshioka S; Yamamoto T; Yasuda K; Matsumura S
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i25-i26. PubMed ID: 25359823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of experimental and theoretical kASi factors for a 200-kV analytical electron microscope.
    Sheridan PJ
    J Electron Microsc Tech; 1989 Jan; 11(1):41-61. PubMed ID: 2915261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative determination of low-Z elements in single atmospheric particles on boron substrates by automated scanning electron microscopy-energy-dispersive X-ray spectrometry.
    Choël M; Deboudt K; Osán J; Flament P; Van Grieken R
    Anal Chem; 2005 Sep; 77(17):5686-92. PubMed ID: 16131082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ionic Liquids as a Reference Material Candidate for the Quick Performance Check of Energy Dispersive X-ray Spectrometers for the Low Energy Range below 1 keV.
    Holzweber M; Unger WE; Hodoroaba VD
    Anal Chem; 2016 Jul; 88(14):6967-70. PubMed ID: 27336962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) quantitative?
    Newbury DE; Ritchie NW
    Scanning; 2013; 35(3):141-68. PubMed ID: 22886950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.