These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 27446814)

  • 21. Assessing the bacterial contribution to the plastid proteome.
    Qiu H; Price DC; Weber AP; Facchinelli F; Yoon HS; Bhattacharya D
    Trends Plant Sci; 2013 Dec; 18(12):680-7. PubMed ID: 24139901
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolic connectivity as a driver of host and endosymbiont integration.
    Karkar S; Facchinelli F; Price DC; Weber AP; Bhattacharya D
    Proc Natl Acad Sci U S A; 2015 Aug; 112(33):10208-15. PubMed ID: 25825767
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Commentary: Plastid establishment did not require a chlamydial partner.
    Ball SG; Bhattacharya D; Qiu H; Weber AP
    Front Cell Infect Microbiol; 2016; 6():43. PubMed ID: 27148492
    [No Abstract]   [Full Text] [Related]  

  • 24. Complex Endosymbioses I: From Primary to Complex Plastids, Multiple Independent Events.
    Füssy Z; Oborník M
    Methods Mol Biol; 2018; 1829():17-35. PubMed ID: 29987712
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chlamydial genes shed light on the evolution of photoautotrophic eukaryotes.
    Becker B; Hoef-Emden K; Melkonian M
    BMC Evol Biol; 2008 Jul; 8():203. PubMed ID: 18627593
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genomes of Stigonematalean cyanobacteria (subsection V) and the evolution of oxygenic photosynthesis from prokaryotes to plastids.
    Dagan T; Roettger M; Stucken K; Landan G; Koch R; Major P; Gould SB; Goremykin VV; Rippka R; Tandeau de Marsac N; Gugger M; Lockhart PJ; Allen JF; Brune I; Maus I; Pühler A; Martin WF
    Genome Biol Evol; 2013; 5(1):31-44. PubMed ID: 23221676
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Non-photosynthetic Diatom Reveals Early Steps of Reductive Evolution in Plastids.
    Kamikawa R; Moog D; Zauner S; Tanifuji G; Ishida KI; Miyashita H; Mayama S; Hashimoto T; Maier UG; Archibald JM; Inagaki Y
    Mol Biol Evol; 2017 Sep; 34(9):2355-2366. PubMed ID: 28549159
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A new scenario of plastid evolution: plastid primary endosymbiosis before the divergence of the "Plantae," emended.
    Nozaki H
    J Plant Res; 2005 Aug; 118(4):247-55. PubMed ID: 16032387
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cyanobacterial contribution to algal nuclear genomes is primarily limited to plastid functions.
    Reyes-Prieto A; Hackett JD; Soares MB; Bonaldo MF; Bhattacharya D
    Curr Biol; 2006 Dec; 16(23):2320-5. PubMed ID: 17141613
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plastid-localized amino acid biosynthetic pathways of Plantae are predominantly composed of non-cyanobacterial enzymes.
    Reyes-Prieto A; Moustafa A
    Sci Rep; 2012; 2():955. PubMed ID: 23233874
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Single, ancient origin of a plastid metabolite translocator family in Plantae from an endomembrane-derived ancestor.
    Weber AP; Linka M; Bhattacharya D
    Eukaryot Cell; 2006 Mar; 5(3):609-12. PubMed ID: 16524915
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chlamydia exploit the mammalian tryptophan-depletion defense strategy as a counter-defensive cue to trigger a survival state of persistence.
    Bonner CA; Byrne GI; Jensen RA
    Front Cell Infect Microbiol; 2014; 4():17. PubMed ID: 24616884
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Paulinella, a model for understanding plastid primary endosymbiosis.
    Gabr A; Grossman AR; Bhattacharya D
    J Phycol; 2020 Aug; 56(4):837-843. PubMed ID: 32289879
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chromalveolates and the evolution of plastids by secondary endosymbiosis.
    Keeling PJ
    J Eukaryot Microbiol; 2009; 56(1):1-8. PubMed ID: 19335769
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The biosynthetic capacities of the plastids and integration between cytoplasmic and chloroplast processes.
    Rolland N; Curien G; Finazzi G; Kuntz M; Maréchal E; Matringe M; Ravanel S; Seigneurin-Berny D
    Annu Rev Genet; 2012; 46():233-64. PubMed ID: 22934643
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Back to primary endosymbiosis: from plastids to artificial photosynthetic life-forms.
    Flores Tinoco V; Herrera-Estrella L; Lopez-Arredondo D
    Trends Plant Sci; 2023 Jul; 28(7):743-745. PubMed ID: 37085412
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Localization and Evolution of Putative Triose Phosphate Translocators in the Diatom Phaeodactylum tricornutum.
    Moog D; Rensing SA; Archibald JM; Maier UG; Ullrich KK
    Genome Biol Evol; 2015 Oct; 7(11):2955-69. PubMed ID: 26454011
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Eukaryotic and eubacterial contributions to the establishment of plastid proteome estimated by large-scale phylogenetic analyses.
    Suzuki K; Miyagishima SY
    Mol Biol Evol; 2010 Mar; 27(3):581-90. PubMed ID: 19910386
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A modern descendant of early green algal phagotrophs.
    Maruyama S; Kim E
    Curr Biol; 2013 Jun; 23(12):1081-4. PubMed ID: 23707430
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Proteomic analysis of the Cyanophora paradoxa muroplast provides clues on early events in plastid endosymbiosis.
    Facchinelli F; Pribil M; Oster U; Ebert NJ; Bhattacharya D; Leister D; Weber AP
    Planta; 2013 Feb; 237(2):637-51. PubMed ID: 23212214
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.