BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 27446944)

  • 21. Use of a real-size 3D-printed model as a preoperative and intraoperative tool for minimally invasive plating of comminuted midshaft clavicle fractures.
    Kim HN; Liu XN; Noh KC
    J Orthop Surg Res; 2015 Jun; 10():91. PubMed ID: 26054648
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Application of 3D printed customized external fixator in fracture reduction.
    Qiao F; Li D; Jin Z; Gao Y; Zhou T; He J; Cheng L
    Injury; 2015; 46(6):1150-5. PubMed ID: 25702252
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The efficacy of 3D printing-assisted surgery for traumatic fracture: a meta-analysis.
    Xiong L; Li X; Li H; Chen Z; Xiao T
    Postgrad Med J; 2019 Aug; 95(1126):414-419. PubMed ID: 31324729
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Various Applications of 3D Printing in Cardiovascular Diseases.
    El Sabbagh A; Eleid MF; Al-Hijji M; Anavekar NS; Holmes DR; Nkomo VT; Oderich GS; Cassivi SD; Said SM; Rihal CS; Matsumoto JM; Foley TA
    Curr Cardiol Rep; 2018 May; 20(6):47. PubMed ID: 29749577
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effectiveness of personalized 3D printed models for patient education in degenerative lumbar disease.
    Zhuang YD; Zhou MC; Liu SC; Wu JF; Wang R; Chen CM
    Patient Educ Couns; 2019 Oct; 102(10):1875-1881. PubMed ID: 31113688
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Standardizing evaluation of patient-specific 3D printed models in surgical planning: development of a cross-disciplinary survey tool for physician and trainee feedback.
    Schlegel L; Ho M; Fields JM; Backlund E; Pugliese R; Shine KM
    BMC Med Educ; 2022 Aug; 22(1):614. PubMed ID: 35953840
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Introducing 3-Dimensional Printing of a Human Anatomic Pathology Specimen: Potential Benefits for Undergraduate and Postgraduate Education and Anatomic Pathology Practice.
    Mahmoud A; Bennett M
    Arch Pathol Lab Med; 2015 Aug; 139(8):1048-51. PubMed ID: 26230598
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-dimensional printed models in congenital heart disease.
    Cantinotti M; Valverde I; Kutty S
    Int J Cardiovasc Imaging; 2017 Jan; 33(1):137-144. PubMed ID: 27677762
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In-House Manufacture of Sterilizable, Scaled, Patient-Specific 3D-Printed Models for Rhinoplasty.
    Bekisz JM; Liss HA; Maliha SG; Witek L; Coelho PG; Flores RL
    Aesthet Surg J; 2019 Feb; 39(3):254-263. PubMed ID: 29982464
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Clinical efficacy and effectiveness of 3D printing: a systematic review.
    Diment LE; Thompson MS; Bergmann JHM
    BMJ Open; 2017 Dec; 7(12):e016891. PubMed ID: 29273650
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three-Dimensional Printing of Surgical Clips: An In Vitro Pilot Study and Trial of Efficacy.
    Canvasser NE; De S; Koseoglu E; Lay AH; Sorokin I; Fernandez R; Cadeddu JA
    J Endourol; 2017 Sep; 31(9):930-933. PubMed ID: 28719986
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Using 3D printed models for planning and guidance during endovascular intervention: a technical advance.
    Itagaki MW
    Diagn Interv Radiol; 2015; 21(4):338-41. PubMed ID: 26027767
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Use of Three-Dimensional Printing Model in the Training of Choledochoscopy Techniques.
    Li A; Tang R; Rong Z; Zeng J; Xiang C; Yu L; Zhao W; Dong J
    World J Surg; 2018 Dec; 42(12):4033-4038. PubMed ID: 30066020
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Impact of 3D Technology in Optimizing Midface Fracture Treatment-Focus on the Zygomatic Bone.
    Costan VV; Nicolau A; Sulea D; Ciofu ML; Boișteanu O; Popescu E
    J Oral Maxillofac Surg; 2021 Apr; 79(4):880-891. PubMed ID: 33279472
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Three-Dimensional Virtual and Printed Prototypes in Complex Congenital and Pediatric Cardiac Surgery-A Multidisciplinary Team-Learning Experience.
    Kiraly L; Shah NC; Abdullah O; Al-Ketan O; Rowshan R
    Biomolecules; 2021 Nov; 11(11):. PubMed ID: 34827702
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Use of 3D Printing Technology in the Ilizarov Method Treatment: Pilot Study.
    Burzyńska K; Morasiewicz P; Filipiak J
    Adv Clin Exp Med; 2016; 25(6):1157-1163. PubMed ID: 28028968
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D Printing in Spine Surgery.
    Cai H; Liu Z; Wei F; Yu M; Xu N; Li Z
    Adv Exp Med Biol; 2018; 1093():345-359. PubMed ID: 30306494
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Personalized development of human organs using 3D printing technology.
    Radenkovic D; Solouk A; Seifalian A
    Med Hypotheses; 2016 Feb; 87():30-3. PubMed ID: 26826637
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication and assessment of 3D printed anatomical models of the lower limb for anatomical teaching and femoral vessel access training in medicine.
    O'Reilly MK; Reese S; Herlihy T; Geoghegan T; Cantwell CP; Feeney RN; Jones JF
    Anat Sci Educ; 2016; 9(1):71-9. PubMed ID: 26109268
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D Printing Technology Improves Medical Interns' Understanding of Anatomy of Gastrocolic Trunk.
    Chen Y; Qian C; Shen R; Wu D; Bian L; Qu H; Fan X; Liu Z; Li Y; Xia J
    J Surg Educ; 2020; 77(5):1279-1284. PubMed ID: 32273250
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.