BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 27447048)

  • 1. Tagging and Enriching Proteins Enables Cell-Specific Proteomics.
    Elliott TS; Bianco A; Townsley FM; Fried SD; Chin JW
    Cell Chem Biol; 2016 Jul; 23(7):805-815. PubMed ID: 27447048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteome labeling and protein identification in specific tissues and at specific developmental stages in an animal.
    Elliott TS; Townsley FM; Bianco A; Ernst RJ; Sachdeva A; Elsässer SJ; Davis L; Lang K; Pisa R; Greiss S; Lilley KS; Chin JW
    Nat Biotechnol; 2014 May; 32(5):465-72. PubMed ID: 24727715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic code expansion and bioorthogonal labelling enables cell specific proteomics in an animal.
    Elliott TS; Bianco A; Chin JW
    Curr Opin Chem Biol; 2014 Aug; 21():154-60. PubMed ID: 25159020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tissue-specific proteome tagging: an orthogonal approach.
    Snyder AL; Brustad EM
    Chembiochem; 2014 Aug; 15(12):1731-3. PubMed ID: 24990619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel Tetrafunctional Probes Identify Target Receptors and Binding Sites of Small-Molecule Drugs from Living Systems.
    Miyajima R; Sakai K; Otani Y; Wadatsu T; Sakata Y; Nishikawa Y; Tanaka M; Yamashita Y; Hayashi M; Kondo K; Hayashi T
    ACS Chem Biol; 2020 Sep; 15(9):2364-2373. PubMed ID: 32786265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The molecular chaperone Hsp90 is a component of the cap-binding complex and interacts with the translational repressor Cup during Drosophila oogenesis.
    Pisa V; Cozzolino M; Gargiulo S; Ottone C; Piccioni F; Monti M; Gigliotti S; Talamo F; Graziani F; Pucci P; Verrotti AC
    Gene; 2009 Mar; 432(1-2):67-74. PubMed ID: 19101615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An isotopically tagged azobenzene-based cleavable linker for quantitative proteomics.
    Qian Y; Martell J; Pace NJ; Ballard TE; Johnson DS; Weerapana E
    Chembiochem; 2013 Aug; 14(12):1410-4. PubMed ID: 23861326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional proteomics of the active cysteine protease content in Drosophila S2 cells.
    Kocks C; Maehr R; Overkleeft HS; Wang EW; Iyer LK; Lennon-Dumenil AM; Ploegh HL; Kessler BM
    Mol Cell Proteomics; 2003 Nov; 2(11):1188-97. PubMed ID: 13130081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Drosophila melanogaster sperm proteome-II (DmSP-II).
    Wasbrough ER; Dorus S; Hester S; Howard-Murkin J; Lilley K; Wilkin E; Polpitiya A; Petritis K; Karr TL
    J Proteomics; 2010 Oct; 73(11):2171-85. PubMed ID: 20833280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stable isotope labeling with amino acids in Drosophila for quantifying proteins and modifications.
    Xu P; Tan H; Duong DM; Yang Y; Kupsco J; Moberg KH; Li H; Jin P; Peng J
    J Proteome Res; 2012 Sep; 11(9):4403-12. PubMed ID: 22830426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A cleavable biotin tagging reagent that enables the enrichment and identification of carbonylation sites in proteins.
    Coffey CM; Gronert S
    Anal Bioanal Chem; 2016 Jan; 408(3):865-74. PubMed ID: 26613796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of new O-GlcNAc modified proteins using a click-chemistry-based tagging.
    Gurcel C; Vercoutter-Edouart AS; Fonbonne C; Mortuaire M; Salvador A; Michalski JC; Lemoine J
    Anal Bioanal Chem; 2008 Apr; 390(8):2089-97. PubMed ID: 18369606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms and Minimization of False Discovery of Metabolic Bioorthogonal Noncanonical Amino Acid Proteomics.
    Liu C; Wong N; Watanabe E; Hou W; Biral L; DeCastro J; Mehdipour M; Aran K; Conboy MJ; Conboy IM
    Rejuvenation Res; 2022 Apr; 25(2):95-109. PubMed ID: 35323026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Profiling the specific reactivity of the proteome with non-directed activity-based probes.
    Adam GC; Cravatt BF; Sorensen EJ
    Chem Biol; 2001 Jan; 8(1):81-95. PubMed ID: 11182321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative Proteomics in Drosophila with Holidic Stable-Isotope Labeling of Amino Acids in Fruit Flies (SILAF).
    Schober FA; Atanassov I; Freyer C; Wredenberg A
    Methods Mol Biol; 2021; 2192():75-87. PubMed ID: 33230767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mining Proteomes Using Bioorthogonal Probes.
    Wu H; Devaraj NK
    Cell Chem Biol; 2016 Jul; 23(7):751-753. PubMed ID: 27447043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing Comprehensive Analysis of Newly Synthesized Proteins Based on Cleavable Bioorthogonal Tagging.
    Shao Y; Bao H; Ma L; Yuan W; Zhang L; Yao J; Meng P; Peng Y; Zhang S; Cao T; Lu H
    Anal Chem; 2021 Jul; 93(27):9408-9417. PubMed ID: 34197092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of trifunctional probes for glycoproteomic analysis.
    Tsai CS; Liu PY; Yen HY; Hsu TL; Wong CH
    Chem Commun (Camb); 2010 Aug; 46(30):5575-7. PubMed ID: 20467665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomics evaluation of chemically cleavable activity-based probes.
    Fonović M; Verhelst SH; Sorum MT; Bogyo M
    Mol Cell Proteomics; 2007 Oct; 6(10):1761-70. PubMed ID: 17615255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of Chemically-Cleavable Linkers for Quantitative Mapping of Small Molecule-Cysteinome Reactivity.
    Rabalski AJ; Bogdan AR; Baranczak A
    ACS Chem Biol; 2019 Sep; 14(9):1940-1950. PubMed ID: 31430117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.