These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 27447196)
21. Determining the fate of Microcystis aeruginosa cells and microcystin toxins following chloramination. Ho L; Kayal N; Trolio R; Newcombe G Water Sci Technol; 2010; 62(2):442-50. PubMed ID: 20651451 [TBL] [Abstract][Full Text] [Related]
22. Photodegradation of Dicloran in Freshwater and Seawater. Vebrosky EN; Saranjampour P; Crosby DG; Armbrust KL J Agric Food Chem; 2018 Mar; 66(11):2654-2659. PubMed ID: 29474091 [TBL] [Abstract][Full Text] [Related]
23. Mechanistic considerations of photosensitized transformation of microcystin-LR (cyanobacterial toxin) in aqueous environments. Yan S; Zhang D; Song W Environ Pollut; 2014 Oct; 193():111-118. PubMed ID: 25016104 [TBL] [Abstract][Full Text] [Related]
24. Interaction of extrinsic chemical factors affecting photodegradation of dissolved organic matter in aquatic ecosystems. Porcal P; Dillon PJ; Molot LA Photochem Photobiol Sci; 2014 May; 13(5):799-812. PubMed ID: 24675971 [TBL] [Abstract][Full Text] [Related]
25. Role of Free Radicals/Reactive Oxygen Species in MeHg Photodegradation: Importance of Utilizing Appropriate Scavengers. Han X; Li Y; Li D; Liu C Environ Sci Technol; 2017 Apr; 51(7):3784-3793. PubMed ID: 28267919 [TBL] [Abstract][Full Text] [Related]
26. Effects of nonylphenol on the growth and microcystin production of Microcystis strains. Wang J; Xie P; Guo N Environ Res; 2007 Jan; 103(1):70-8. PubMed ID: 16831412 [TBL] [Abstract][Full Text] [Related]
27. Photochemical behavior of dissolved and colloidal organic matter in estuarine and oceanic waters. Zhu WZ; Yang GP; Zhang HH Sci Total Environ; 2017 Dec; 607-608():214-224. PubMed ID: 28692892 [TBL] [Abstract][Full Text] [Related]
28. High levels of structural diversity observed in microcystins from Microcystis CAWBG11 and characterization of six new microcystin congeners. Puddick J; Prinsep MR; Wood SA; Kaufononga SA; Cary SC; Hamilton DP Mar Drugs; 2014 Nov; 12(11):5372-95. PubMed ID: 25402827 [TBL] [Abstract][Full Text] [Related]
29. Efficient removal of microcystin-LR by UV-C/H₂O₂ in synthetic and natural water samples. He X; Pelaez M; Westrick JA; O'Shea KE; Hiskia A; Triantis T; Kaloudis T; Stefan MI; de la Cruz AA; Dionysiou DD Water Res; 2012 Apr; 46(5):1501-10. PubMed ID: 22177771 [TBL] [Abstract][Full Text] [Related]
30. Distribution of microcystin-producing and non-microcystin-producing Microcystis sp. in European freshwater bodies: detection of microcystins and microcystin genes in individual colonies. Via-Ordorika L; Fastner J; Kurmayer R; Hisbergues M; Dittmann E; Komarek J; Erhard M; Chorus I Syst Appl Microbiol; 2004 Sep; 27(5):592-602. PubMed ID: 15490561 [TBL] [Abstract][Full Text] [Related]
31. Toxic risk associated with sporadic occurrences of Microcystis aeruginosa blooms from tidal rivers in marine and estuarine ecosystems and its impact on Artemia franciscana nauplii populations. D'ors A; Bartolomé MC; Sánchez-Fortún S Chemosphere; 2013 Feb; 90(7):2187-92. PubMed ID: 23246722 [TBL] [Abstract][Full Text] [Related]
33. The role of indirect photochemical degradation in the environmental fate of pesticides: a review. Remucal CK Environ Sci Process Impacts; 2014 Apr; 16(4):628-53. PubMed ID: 24419250 [TBL] [Abstract][Full Text] [Related]
34. Direct evidence for production of microcystins by Anabaena strains from the Baltic Sea. Halinen K; Jokela J; Fewer DP; Wahlsten M; Sivonen K Appl Environ Microbiol; 2007 Oct; 73(20):6543-50. PubMed ID: 17766456 [TBL] [Abstract][Full Text] [Related]
35. Microcystins associated with Microcystis dominated blooms in the Southwest wetlands, Western Australia. Kemp A; John J Environ Toxicol; 2006 Apr; 21(2):125-30. PubMed ID: 16528687 [TBL] [Abstract][Full Text] [Related]
36. Why are there so few freshwater fish species in most estuaries? Whitfield AK J Fish Biol; 2015 Apr; 86(4):1227-50. PubMed ID: 25739335 [TBL] [Abstract][Full Text] [Related]
37. Photodegradation of cyanotoxins in surface waters. Kurtz T; Zeng T; Rosario-Ortiz FL Water Res; 2021 Mar; 192():116804. PubMed ID: 33494040 [TBL] [Abstract][Full Text] [Related]
38. Effects of water parameters on the degradation of microcystin-LR under visible light-activated TiO2 photocatalyst. Pelaez M; de la Cruz AA; O'Shea K; Falaras P; Dionysiou DD Water Res; 2011 Jun; 45(12):3787-96. PubMed ID: 21575981 [TBL] [Abstract][Full Text] [Related]
39. Effects of microcystin-producing and microcystin-freeMicrocystis aeruginosa on enzyme activity and nutrient content in the rotifer Brachionus calyciflorus. Liang Y; Su Y; Ouyang K; Chen X; Yang J Environ Sci Pollut Res Int; 2017 Apr; 24(11):10430-10442. PubMed ID: 28281066 [TBL] [Abstract][Full Text] [Related]
40. Non-microcystin producing Microcystis wesenbergii (Komárek) Komárek (Cyanobacteria) representing a main waterbloom-forming species in Chinese waters. Xu Y; Wu Z; Yu B; Peng X; Yu G; Wei Z; Wang G; Li R Environ Pollut; 2008 Nov; 156(1):162-7. PubMed ID: 18243451 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]