These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 27447454)

  • 41. Nanostructure-Preserved Hematite Thin Film for Efficient Solar Water Splitting.
    Kim JY; Youn DH; Kim JH; Kim HG; Lee JS
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):14123-9. PubMed ID: 26046296
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Direct in Situ Measurement of Charge Transfer Processes During Photoelectrochemical Water Oxidation on Catalyzed Hematite.
    Qiu J; Hajibabaei H; Nellist MR; Laskowski FAL; Hamann TW; Boettcher SW
    ACS Cent Sci; 2017 Sep; 3(9):1015-1025. PubMed ID: 28979943
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Solar water oxidation by composite catalyst/alpha-Fe(2)O(3) photoanodes.
    Zhong DK; Sun J; Inumaru H; Gamelin DR
    J Am Chem Soc; 2009 May; 131(17):6086-7. PubMed ID: 19354283
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hybrid Microwave Annealing Synthesizes Highly Crystalline Nanostructures for (Photo)electrocatalytic Water Splitting.
    Zhang H; Lee JS
    Acc Chem Res; 2019 Nov; 52(11):3132-3142. PubMed ID: 31603645
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Uniform Doping of Titanium in Hematite Nanorods for Efficient Photoelectrochemical Water Splitting.
    Wang D; Chen H; Chang G; Lin X; Zhang Y; Aldalbahi A; Peng C; Wang J; Fan C
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):14072-8. PubMed ID: 26052922
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces.
    Yang J; Walczak K; Anzenberg E; Toma FM; Yuan G; Beeman J; Schwartzberg A; Lin Y; Hettick M; Javey A; Ager JW; Yano J; Frei H; Sharp ID
    J Am Chem Soc; 2014 Apr; 136(17):6191-4. PubMed ID: 24720554
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hematite-based photo-oxidation of water using transparent distributed current collectors.
    Riha SC; Vermeer MJ; Pellin MJ; Hupp JT; Martinson AB
    ACS Appl Mater Interfaces; 2013 Jan; 5(2):360-7. PubMed ID: 23286276
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hematite/Si nanowire dual-absorber system for photoelectrochemical water splitting at low applied potentials.
    Mayer MT; Du C; Wang D
    J Am Chem Soc; 2012 Aug; 134(30):12406-9. PubMed ID: 22800199
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ultrafast Charge Transfer between Light Absorber and Co
    Edri E; Cooper JK; Sharp ID; Guldi DM; Frei H
    J Am Chem Soc; 2017 Apr; 139(15):5458-5466. PubMed ID: 28355079
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhanced Performance of Photoelectrochemical Water Splitting with ITO@α-Fe2O3 Core-Shell Nanowire Array as Photoanode.
    Yang J; Bao C; Yu T; Hu Y; Luo W; Zhu W; Fu G; Li Z; Gao H; Li F; Zou Z
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26482-90. PubMed ID: 26565922
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synergistic Effect of Porosity and Gradient Doping in Efficient Solar Water Oxidation of Catalyst-Free Gradient Mo:BiVO
    Antony RP; Zhang M; Zhou K; Loo SCJ; Barber J; Wong LH
    ACS Omega; 2018 Mar; 3(3):2724-2734. PubMed ID: 31458550
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Integrating Zeolite-Type Chalcogenide with Titanium Dioxide Nanowires for Enhanced Photoelectrochemical Activity.
    Mao C; Wang Y; Jiao W; Chen X; Lin Q; Deng M; Ling Y; Zhou Y; Bu X; Feng P
    Langmuir; 2017 Nov; 33(47):13634-13639. PubMed ID: 29139299
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Single-Atom Iridium on Hematite Photoanodes for Solar Water Splitting: Catalyst or Spectator?
    Guo Q; Zhao Q; Crespo-Otero R; Di Tommaso D; Tang J; Dimitrov SD; Titirici MM; Li X; Jorge Sobrido AB
    J Am Chem Soc; 2023 Jan; 145(3):1686-1695. PubMed ID: 36631927
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dual Effects of Nanostructuring and Oxygen Vacancy on Photoelectrochemical Water Oxidation Activity of Superstructured and Defective Hematite Nanorods.
    Wang L; Marcus K; Huang X; Shen Z; Yang Y; Bi Y
    Small; 2018 Apr; 14(14):e1704464. PubMed ID: 29484810
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Thermal decomposition approach for the formation of α-Fe2O3 mesoporous photoanodes and an α-Fe2O3/CoO hybrid structure for enhanced water oxidation.
    Diab M; Mokari T
    Inorg Chem; 2014 Feb; 53(4):2304-9. PubMed ID: 24471819
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enhancing Hematite Photoanode Activity for Water Oxidation by Incorporation of Reduced Graphene Oxide.
    do Amaral Carminati S; Souza FL; Nogueira AF
    Chemphyschem; 2016 Jan; 17(1):170-7. PubMed ID: 26561385
    [TBL] [Abstract][Full Text] [Related]  

  • 57. PRED treatment mediated stable and efficient water oxidation performance of the Fe2O3 nano-coral structure.
    Shinde PS; Lee HH; Lee SY; Lee YM; Jang JS
    Nanoscale; 2015 Sep; 7(36):14906-13. PubMed ID: 26300305
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhanced Charge Separation through ALD-Modified Fe2 O3 /Fe2 TiO5 Nanorod Heterojunction for Photoelectrochemical Water Oxidation.
    Li C; Wang T; Luo Z; Liu S; Gong J
    Small; 2016 Jul; 12(25):3415-22. PubMed ID: 27197643
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Back electron-hole recombination in hematite photoanodes for water splitting.
    Le Formal F; Pendlebury SR; Cornuz M; Tilley SD; Grätzel M; Durrant JR
    J Am Chem Soc; 2014 Feb; 136(6):2564-74. PubMed ID: 24437340
    [TBL] [Abstract][Full Text] [Related]  

  • 60. p-Type Transparent Conducting Oxide/n-Type Semiconductor Heterojunctions for Efficient and Stable Solar Water Oxidation.
    Chen L; Yang J; Klaus S; Lee LJ; Woods-Robinson R; Ma J; Lum Y; Cooper JK; Toma FM; Wang LW; Sharp ID; Bell AT; Ager JW
    J Am Chem Soc; 2015 Aug; 137(30):9595-603. PubMed ID: 26161845
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.