These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 27447604)
1. Photoelectrochemical Behavior of Electrophoretically Deposited Hematite Thin Films Modified with Ti(IV). Dalle Carbonare N; Boaretto R; Caramori S; Argazzi R; Dal Colle M; Pasquini L; Bertoncello R; Marelli M; Evangelisti C; Bignozzi CA Molecules; 2016 Jul; 21(7):. PubMed ID: 27447604 [TBL] [Abstract][Full Text] [Related]
2. TiO2 and Fe2O3 films for photoelectrochemical water splitting. Krysa J; Zlamal M; Kment S; Brunclikova M; Hubicka Z Molecules; 2015 Jan; 20(1):1046-58. PubMed ID: 25584834 [TBL] [Abstract][Full Text] [Related]
3. Improvement of the electron collection efficiency in porous hematite using a thin iron oxide underlayer: towards efficient all-iron based photoelectrodes. Dalle Carbonare N; Carli S; Argazzi R; Orlandi M; Bazzanella N; Miotello A; Caramori S; Bignozzi CA Phys Chem Chem Phys; 2015 Nov; 17(44):29661-70. PubMed ID: 26477966 [TBL] [Abstract][Full Text] [Related]
4. A Facile Surface Passivation of Hematite Photoanodes with Iron Titanate Cocatalyst for Enhanced Water Splitting. Wang L; Nguyen NT; Schmuki P ChemSusChem; 2016 Aug; 9(16):2048-53. PubMed ID: 27348809 [TBL] [Abstract][Full Text] [Related]
5. Doping-Promoted Solar Water Oxidation on Hematite Photoanodes. Zhang Y; Ji H; Ma W; Chen C; Song W; Zhao J Molecules; 2016 Jul; 21(7):. PubMed ID: 27376262 [TBL] [Abstract][Full Text] [Related]
6. Reactive ballistic deposition of alpha-Fe2O3 thin films for photoelectrochemical water oxidation. Hahn NT; Ye H; Flaherty DW; Bard AJ; Mullins CB ACS Nano; 2010 Apr; 4(4):1977-86. PubMed ID: 20361756 [TBL] [Abstract][Full Text] [Related]
7. Uniform Doping of Titanium in Hematite Nanorods for Efficient Photoelectrochemical Water Splitting. Wang D; Chen H; Chang G; Lin X; Zhang Y; Aldalbahi A; Peng C; Wang J; Fan C ACS Appl Mater Interfaces; 2015 Jul; 7(25):14072-8. PubMed ID: 26052922 [TBL] [Abstract][Full Text] [Related]
8. Immobilization of a Molecular Ruthenium Catalyst on Hematite Nanorod Arrays for Water Oxidation with Stable Photocurrent. Fan K; Li F; Wang L; Daniel Q; Chen H; Gabrielsson E; Sun J; Sun L ChemSusChem; 2015 Oct; 8(19):3242-7. PubMed ID: 26315677 [TBL] [Abstract][Full Text] [Related]
9. Enhanced photoelectrochemical water splitting efficiency of a hematite-ordered Sb:SnO2 host-guest system. Wang L; Palacios-Padrós A; Kirchgeorg R; Tighineanu A; Schmuki P ChemSusChem; 2014 Feb; 7(2):421-4. PubMed ID: 24449523 [TBL] [Abstract][Full Text] [Related]
10. Low-temperature activation of hematite nanowires for photoelectrochemical water oxidation. Ling Y; Wang G; Wang H; Yang Y; Li Y ChemSusChem; 2014 Mar; 7(3):848-53. PubMed ID: 24493003 [TBL] [Abstract][Full Text] [Related]
11. Sn-doped hematite nanostructures for photoelectrochemical water splitting. Ling Y; Wang G; Wheeler DA; Zhang JZ; Li Y Nano Lett; 2011 May; 11(5):2119-25. PubMed ID: 21476581 [TBL] [Abstract][Full Text] [Related]
12. Activation of Ultrathin Films of Hematite for Photoelectrochemical Water Splitting via H2 Treatment. Moir J; Soheilnia N; Liao K; O'Brien P; Tian Y; Burch KS; Ozin GA ChemSusChem; 2015 May; 8(9):1557-67. PubMed ID: 25650837 [TBL] [Abstract][Full Text] [Related]
13. Enhancement in the performance of ultrathin hematite photoanode for water splitting by an oxide underlayer. Hisatomi T; Dotan H; Stefik M; Sivula K; Rothschild A; Grätzel M; Mathews N Adv Mater; 2012 May; 24(20):2699-702. PubMed ID: 22508522 [TBL] [Abstract][Full Text] [Related]
14. Water oxidation at hematite photoelectrodes: the role of surface states. Klahr B; Gimenez S; Fabregat-Santiago F; Hamann T; Bisquert J J Am Chem Soc; 2012 Mar; 134(9):4294-302. PubMed ID: 22303953 [TBL] [Abstract][Full Text] [Related]
15. Facile synthesis of highly photoactive α-Fe₂O₃-based films for water oxidation. Wang G; Ling Y; Wheeler DA; George KE; Horsley K; Heske C; Zhang JZ; Li Y Nano Lett; 2011 Aug; 11(8):3503-9. PubMed ID: 21766825 [TBL] [Abstract][Full Text] [Related]
16. A Facile Surface Passivation of Hematite Photoanodes with TiO2 Overlayers for Efficient Solar Water Splitting. Ahmed MG; Kretschmer IE; Kandiel TA; Ahmed AY; Rashwan FA; Bahnemann DW ACS Appl Mater Interfaces; 2015 Nov; 7(43):24053-62. PubMed ID: 26488924 [TBL] [Abstract][Full Text] [Related]
17. Controlled synthesis of vertically aligned hematite on conducting substrate for photoelectrochemical cells: nanorods versus nanotubes. Mao A; Shin K; Kim JK; Wang DH; Han GY; Park JH ACS Appl Mater Interfaces; 2011 Jun; 3(6):1852-8. PubMed ID: 21557610 [TBL] [Abstract][Full Text] [Related]
18. Plasmon-enhanced photoelectrochemical water splitting using au nanoparticles decorated on hematite nanoflake arrays. Wang L; Zhou X; Nguyen NT; Schmuki P ChemSusChem; 2015 Feb; 8(4):618-22. PubMed ID: 25581403 [TBL] [Abstract][Full Text] [Related]
19. The role of the domain size and titanium dopant in nanocrystalline hematite thin films for water photolysis. Yan D; Tao J; Kisslinger K; Cen J; Wu Q; Orlov A; Liu M Nanoscale; 2015 Nov; 7(44):18515-23. PubMed ID: 26499938 [TBL] [Abstract][Full Text] [Related]
20. Low-Temperature Atomic Layer Deposition of Crystalline and Photoactive Ultrathin Hematite Films for Solar Water Splitting. Steier L; Luo J; Schreier M; Mayer MT; Sajavaara T; Grätzel M ACS Nano; 2015 Dec; 9(12):11775-83. PubMed ID: 26516784 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]