These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 2744775)
1. Effects of calcium entry blockers on human platelet metabolism measured by microcalorimetry. Edvinsson L; Ikomi-Kumm J; Monti M Hum Toxicol; 1989 Mar; 8(2):131-3. PubMed ID: 2744775 [TBL] [Abstract][Full Text] [Related]
2. A comparison of the cardiac and vasodilatory effects of some calcium entry blockers in perfused isolated guinea-pig hearts. Boddeke HW; Wilffert B; Heynis JB; van de Haar Keuken V; Jonkman FA; van Zwieten PA Arch Int Pharmacodyn Ther; 1987 Aug; 288(2):175-85. PubMed ID: 3675080 [TBL] [Abstract][Full Text] [Related]
3. Inhibition of platelet-activating factor binding to human platelets by calcium channel blockers. Valone FH Thromb Res; 1987 Mar; 45(5):427-35. PubMed ID: 3590086 [TBL] [Abstract][Full Text] [Related]
4. In vitro effects of two novel calcium antagonists (nitrendipine and nisoldipine) on intraplatelet calcium redistribution, platelet aggregation and thromboxane A2 formation. Comparison with diltiazem, nifedipine and verapamil. Rostagno C; Abbate R; Gensini GF; Coppo M; Prisco D; Boddi M; Neri Serneri GG Thromb Res; 1991 Aug; 63(4):457-62. PubMed ID: 1754998 [No Abstract] [Full Text] [Related]
5. Influence of calcium-channel blockers on platelet function and arachidonic acid metabolism. Mehta JL Am J Cardiol; 1985 Jan; 55(3):158B-164B. PubMed ID: 2982252 [TBL] [Abstract][Full Text] [Related]
6. Effects of calcium channel blockers on platelet aggregation and thromboxane A2 formation: an in vivo double blind randomized study. Rostagno C; Prisco D; Paniccia R; Costanzo G; Poggesi L; Boddi M; Abbate R Thromb Res; 1990 Aug; 59(3):531-9. PubMed ID: 2237825 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of calcium entry blockers in several models of immediate hypersensitivity. Ritchie DM; Sierchio JN; Bishop CM; Hedli CC; Levinson SL; Capetola RJ J Pharmacol Exp Ther; 1984 Jun; 229(3):690-5. PubMed ID: 6202868 [TBL] [Abstract][Full Text] [Related]
8. Inhibitor effects of diltiazem, nicardipine, nifedipine and verapamil on the norepinephrine-induced contractions of the canine saphenous vein in calcium-free medium. Saïag B; Milon D; Bentue-Ferrer D; Allain H; Rault B; Van den Driessche J Res Commun Chem Pathol Pharmacol; 1994 Mar; 83(3):255-69. PubMed ID: 8008975 [TBL] [Abstract][Full Text] [Related]
9. Calcium channel blocker treatment of tumor cells induces alterations in the cytoskeleton, mobility of the integrin alpha IIb beta 3 and tumor-cell-induced platelet aggregation. Timar J; Chopra H; Rong X; Hatfield JS; Fligiel SE; Onoda JM; Taylor JD; Honn KV J Cancer Res Clin Oncol; 1992; 118(6):425-34. PubMed ID: 1377695 [TBL] [Abstract][Full Text] [Related]
10. Compared effects of calcium entry blockers on calcium-induced tension in rat isolated cerebral and peripheral resistance vessels. Julou-Schaeffer G; Freslon JL Naunyn Schmiedebergs Arch Pharmacol; 1987 Dec; 336(6):670-6. PubMed ID: 3444482 [TBL] [Abstract][Full Text] [Related]
11. Investigation of the mechanism of negative inotropic activity of some calcium antagonists. Boddeke HW; Wilffert B; Heynis JB; van Zwieten PA J Cardiovasc Pharmacol; 1988 Mar; 11(3):321-5. PubMed ID: 2452925 [TBL] [Abstract][Full Text] [Related]
12. Membrane activity, antioxidant, antiaggregatory and antihemolytic properties of four calcium channel blockers. Robak J; Duniec Z Pharmacol Res Commun; 1986 Dec; 18(12):1107-17. PubMed ID: 3562505 [TBL] [Abstract][Full Text] [Related]
13. Effect of calcium entry blockers and adenosine on the relaxation of large and small coronary arteries. Mustafa SJ; Askar AO Life Sci; 1986 Mar; 38(10):877-85. PubMed ID: 3951314 [TBL] [Abstract][Full Text] [Related]
14. The calcium channel blocker LAS 30538, unlike nifedipine, verapamil, diltiazem or flunarizine, potently inhibits insulin secretion in-vivo in rats and dogs. Gristwood RW; Furman BL; Llenas J; Jauregui J; Berga P J Pharm Pharmacol; 1992 Oct; 44(10):851-5. PubMed ID: 1360513 [TBL] [Abstract][Full Text] [Related]
15. Inhibition of platelet aggregation by diltiazem. Comparison with verapamil and nifedipine and inhibitory potencies of diltiazem metabolites. Kiyomoto A; Sasaki Y; Odawara A; Morita T Circ Res; 1983 Feb; 52(2 Pt 2):I115-9. PubMed ID: 6831645 [TBL] [Abstract][Full Text] [Related]
16. Isolated rat cardiac myocytes as an experimental model to study calcium overload: the effect of calcium-entry blockers. Donck LV; Pauwels PJ; Vandeplassche G; Borgers M Life Sci; 1986 Mar; 38(9):765-72. PubMed ID: 3951332 [TBL] [Abstract][Full Text] [Related]
17. Effects of three different L-type Ca2+ entry blockers on airway constriction induced by muscarinic receptor stimulation. Hirota K; Hashiba E; Yoshioka H; Kabara S; Matsuki A Br J Anaesth; 2003 May; 90(5):671-5. PubMed ID: 12697597 [TBL] [Abstract][Full Text] [Related]
18. Effects of diltiazem and verapamil on ADP-induced rabbit platelet shape change and aggregation. Dehpour AR; Samadian T; Akhavan MM; Meysamee F; Delfan A Gen Pharmacol; 1995 Oct; 26(6):1295-9. PubMed ID: 7590122 [TBL] [Abstract][Full Text] [Related]
19. Distinction of two components of passive Ca2+ transport into human erythrocytes by Ca2+ entry blockers. Engelmann B; Duhm J Biochim Biophys Acta; 1989 May; 981(1):36-42. PubMed ID: 2541790 [TBL] [Abstract][Full Text] [Related]