These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
43. A level-set approach to joint image segmentation and registration with application to CT lung imaging. Swierczynski P; Papież BW; Schnabel JA; Macdonald C Comput Med Imaging Graph; 2018 Apr; 65():58-68. PubMed ID: 28705410 [TBL] [Abstract][Full Text] [Related]
45. Robust Machine Learning-Based Correction on Automatic Segmentation of the Cerebellum and Brainstem. Wang JY; Ngo MM; Hessl D; Hagerman RJ; Rivera SM PLoS One; 2016; 11(5):e0156123. PubMed ID: 27213683 [TBL] [Abstract][Full Text] [Related]
46. Automated temporal tracking and segmentation of lymphoma on serial CT examinations. Xu J; Greenspan H; Napel S; Rubin DL Med Phys; 2011 Nov; 38(11):5879-86. PubMed ID: 22047352 [TBL] [Abstract][Full Text] [Related]
47. Automated quantification and evaluation of motion artifact on coronary CT angiography images. Ma H; Gros E; Baginski SG; Laste ZR; Kulkarni NM; Okerlund D; Schmidt TG Med Phys; 2018 Dec; 45(12):5494-5508. PubMed ID: 30339290 [TBL] [Abstract][Full Text] [Related]
48. Structure Correction for Robust Volume Segmentation in Presence of Tumors. Sahu P; Zhao Y; Bhatia P; Bogoni L; Jerebko A; Qin H IEEE J Biomed Health Inform; 2021 Apr; 25(4):1151-1162. PubMed ID: 32750948 [TBL] [Abstract][Full Text] [Related]
49. Automatic segmentation of pulmonary segments from volumetric chest CT scans. van Rikxoort EM; de Hoop B; van de Vorst S; Prokop M; van Ginneken B IEEE Trans Med Imaging; 2009 Apr; 28(4):621-30. PubMed ID: 19211346 [TBL] [Abstract][Full Text] [Related]
50. Deep learning for segmentation of 49 selected bones in CT scans: First step in automated PET/CT-based 3D quantification of skeletal metastases. Lindgren Belal S; Sadik M; Kaboteh R; Enqvist O; Ulén J; Poulsen MH; Simonsen J; Høilund-Carlsen PF; Edenbrandt L; Trägårdh E Eur J Radiol; 2019 Apr; 113():89-95. PubMed ID: 30927965 [TBL] [Abstract][Full Text] [Related]
51. Use of Crowd Innovation to Develop an Artificial Intelligence-Based Solution for Radiation Therapy Targeting. Mak RH; Endres MG; Paik JH; Sergeev RA; Aerts H; Williams CL; Lakhani KR; Guinan EC JAMA Oncol; 2019 May; 5(5):654-661. PubMed ID: 30998808 [TBL] [Abstract][Full Text] [Related]
52. A generic approach to pathological lung segmentation. Mansoor A; Bagci U; Xu Z; Foster B; Olivier KN; Elinoff JM; Suffredini AF; Udupa JK; Mollura DJ IEEE Trans Med Imaging; 2014 Dec; 33(12):2293-310. PubMed ID: 25020069 [TBL] [Abstract][Full Text] [Related]
53. Fully automatic segmentation of arbitrarily shaped fiducial markers in cone-beam CT projections. Bertholet J; Wan H; Toftegaard J; Schmidt ML; Chotard F; Parikh PJ; Poulsen PR Phys Med Biol; 2017 Feb; 62(4):1327-1341. PubMed ID: 28114115 [TBL] [Abstract][Full Text] [Related]
54. Automated brain extraction from head CT and CTA images using convex optimization with shape propagation. Najm M; Kuang H; Federico A; Jogiat U; Goyal M; Hill MD; Demchuk A; Menon BK; Qiu W Comput Methods Programs Biomed; 2019 Jul; 176():1-8. PubMed ID: 31200897 [TBL] [Abstract][Full Text] [Related]
55. Determination of lung segments in computed tomography images using the Euclidean distance to the pulmonary artery. Stoecker C; Welter S; Moltz JH; Lassen B; Kuhnigk JM; Krass S; Peitgen HO Med Phys; 2013 Sep; 40(9):091912. PubMed ID: 24007163 [TBL] [Abstract][Full Text] [Related]
56. An integrated segmentation and shape-based classification scheme for distinguishing adenocarcinomas from granulomas on lung CT. Alilou M; Beig N; Orooji M; Rajiah P; Velcheti V; Rakshit S; Reddy N; Yang M; Jacono F; Gilkeson RC; Linden P; Madabhushi A Med Phys; 2017 Jul; 44(7):3556-3569. PubMed ID: 28295386 [TBL] [Abstract][Full Text] [Related]
57. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks. Tong N; Gou S; Yang S; Ruan D; Sheng K Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285 [TBL] [Abstract][Full Text] [Related]
58. Using deep learning to segment breast and fibroglandular tissue in MRI volumes. Dalmış MU; Litjens G; Holland K; Setio A; Mann R; Karssemeijer N; Gubern-Mérida A Med Phys; 2017 Feb; 44(2):533-546. PubMed ID: 28035663 [TBL] [Abstract][Full Text] [Related]
59. Segmentation of multiple heart cavities in 3-D transesophageal ultrasound images. Haak A; Vegas-Sánchez-Ferrero G; Mulder HW; Ren B; Kirişli HA; Metz C; van Burken G; van Stralen M; Pluim JP; van der Steen AF; van Walsum T; Bosch JG IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jun; 62(6):1179-89. PubMed ID: 26067052 [TBL] [Abstract][Full Text] [Related]
60. Automatic lung segmentation from thoracic computed tomography scans using a hybrid approach with error detection. van Rikxoort EM; de Hoop B; Viergever MA; Prokop M; van Ginneken B Med Phys; 2009 Jul; 36(7):2934-47. PubMed ID: 19673192 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]