These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 27447924)

  • 1. Parametric strong mode-coupling in carbon nanotube mechanical resonators.
    Li SX; Zhu D; Wang XH; Wang JT; Deng GW; Li HO; Cao G; Xiao M; Guo GC; Jiang KL; Dai XC; Guo GP
    Nanoscale; 2016 Aug; 8(31):14809-13. PubMed ID: 27447924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strongly Coupled Nanotube Electromechanical Resonators.
    Deng GW; Zhu D; Wang XH; Zou CL; Wang JT; Li HO; Cao G; Liu D; Li Y; Xiao M; Guo GC; Jiang KL; Dai XC; Guo GP
    Nano Lett; 2016 Sep; 16(9):5456-62. PubMed ID: 27487412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamical strong coupling and parametric amplification of mechanical modes of graphene drums.
    Mathew JP; Patel RN; Borah A; Vijay R; Deshmukh MM
    Nat Nanotechnol; 2016 Sep; 11(9):747-51. PubMed ID: 27294506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strong coupling between single-electron tunneling and nanomechanical motion.
    Steele GA; Hüttel AK; Witkamp B; Poot M; Meerwaldt HB; Kouwenhoven LP; van der Zant HS
    Science; 2009 Aug; 325(5944):1103-7. PubMed ID: 19628816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling graphene mechanical resonators to superconducting microwave cavities.
    Weber P; Güttinger J; Tsioutsios I; Chang DE; Bachtold A
    Nano Lett; 2014 May; 14(5):2854-60. PubMed ID: 24745803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mode coupling bi-stability and spectral broadening in buckled carbon nanotube mechanical resonators.
    Rechnitz S; Tabachnik T; Shlafman M; Shlafman S; Yaish YE
    Nat Commun; 2022 Oct; 13(1):5900. PubMed ID: 36202803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong indirect coupling between graphene-based mechanical resonators via a phonon cavity.
    Luo G; Zhang ZZ; Deng GW; Li HO; Cao G; Xiao M; Guo GC; Tian L; Guo GP
    Nat Commun; 2018 Jan; 9(1):383. PubMed ID: 29374169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling carbon nanotube mechanics to a superconducting circuit.
    Schneider BH; Etaki S; van der Zant HS; Steele GA
    Sci Rep; 2012; 2():599. PubMed ID: 22953042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Charge and heat transport in soft nanosystems in the presence of time-dependent perturbations.
    Nocera A; Perroni CA; Ramaglia VM; Cataudella V
    Beilstein J Nanotechnol; 2016; 7():439-64. PubMed ID: 27335736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon nanotubes as ultrahigh quality factor mechanical resonators.
    Hüttel AK; Steele GA; Witkamp B; Poot M; Kouwenhoven LP; van der Zant HS
    Nano Lett; 2009 Jul; 9(7):2547-52. PubMed ID: 19492820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coherent Phonon Rabi Oscillations with a High-Frequency Carbon Nanotube Phonon Cavity.
    Zhu D; Wang XH; Kong WC; Deng GW; Wang JT; Li HO; Cao G; Xiao M; Jiang KL; Dai XC; Guo GC; Nori F; Guo GP
    Nano Lett; 2017 Feb; 17(2):915-921. PubMed ID: 28068098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-
    Zhou X; Venkatachalam S; Zhou R; Xu H; Pokharel A; Fefferman A; Zaknoune M; Collin E
    Nano Lett; 2021 Jul; 21(13):5738-5744. PubMed ID: 34132554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parametric Oscillation, Frequency Mixing, and Injection Locking of Strongly Coupled Nanomechanical Resonator Modes.
    Seitner MJ; Abdi M; Ridolfo A; Hartmann MJ; Weig EM
    Phys Rev Lett; 2017 Jun; 118(25):254301. PubMed ID: 28696761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable parametric amplification of a graphene nanomechanical resonator in the nonlinear regime.
    Su ZJ; Ying Y; Song XX; Zhang ZZ; Zhang QH; Cao G; Li HO; Guo GC; Guo GP
    Nanotechnology; 2021 Apr; 32(15):155203. PubMed ID: 33181503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ground-state cooling of a carbon nanomechanical resonator by spin-polarized current.
    Stadler P; Belzig W; Rastelli G
    Phys Rev Lett; 2014 Jul; 113(4):047201. PubMed ID: 25105648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spin-orbit-induced strong coupling of a single spin to a nanomechanical resonator.
    Pályi A; Struck PR; Rudner M; Flensberg K; Burkard G
    Phys Rev Lett; 2012 May; 108(20):206811. PubMed ID: 23003173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum capacitance mediated carbon nanotube optomechanics.
    Blien S; Steger P; Hüttner N; Graaf R; Hüttel AK
    Nat Commun; 2020 Apr; 11(1):1636. PubMed ID: 32242140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phonon coupling induced thermophoresis of water confined in a carbon nanotube.
    Rajegowda R; Anandakrishnan A; Sathian SP
    Phys Chem Chem Phys; 2020 Mar; 22(11):6081-6085. PubMed ID: 32152611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging Nanomechanical Vibrations and Manipulating Parametric Mode Coupling via Scanning Microwave Microscopy.
    Xu H; Venkatachalam S; Rabenimanana TH; Boyaval C; Eliet S; Braud F; Collin E; Theron D; Zhou X
    Nano Lett; 2024 Jul; 24(28):8550-8557. PubMed ID: 38953564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-frequency micromechanical resonators from aluminium-carbon nanotube nanolaminates.
    Bak JH; Kim YD; Hong SS; Lee BY; Lee SR; Jang JH; Kim M; Char K; Hong S; Park YD
    Nat Mater; 2008 Jun; 7(6):459-63. PubMed ID: 18425133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.