These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 27447955)
1. High-throughput system for screening of high L-lactic acid-productivity strains in deep-well microtiter plates. Lv X; Song J; Yu B; Liu H; Li C; Zhuang Y; Wang Y Bioprocess Biosyst Eng; 2016 Nov; 39(11):1737-47. PubMed ID: 27447955 [TBL] [Abstract][Full Text] [Related]
2. Enhanced production of l-lactic acid by Jiang AL; Hu W; Li WJ; Liu L; Tian XJ; Liu J; Wang SY; Lu D; Chen JH Eng Life Sci; 2018 Sep; 18(9):626-634. PubMed ID: 32624942 [TBL] [Abstract][Full Text] [Related]
3. High-throughput system for screening of Cephalosporin C high-yield strain by 48-deep-well microtiter plates. Tan J; Chu J; Hao Y; Guo Y; Zhuang Y; Zhang S Appl Biochem Biotechnol; 2013 Mar; 169(5):1683-95. PubMed ID: 23334835 [TBL] [Abstract][Full Text] [Related]
4. Contributory roles of two l-lactate dehydrogenases for l-lactic acid production in thermotolerant Bacillus coagulans. Sun L; Zhang C; Lyu P; Wang Y; Wang L; Yu B Sci Rep; 2016 Nov; 6():37916. PubMed ID: 27885267 [TBL] [Abstract][Full Text] [Related]
5. Improvement and scale-down of a Trichoderma reesei shake flask protocol to microtiter plates enables high-throughput screening. Giese H; Kruithof P; Meier K; Sieben M; Antonov E; Hommes RW; Büchs J J Biosci Bioeng; 2014 Dec; 118(6):702-9. PubMed ID: 24982019 [TBL] [Abstract][Full Text] [Related]
6. Model-based characterisation of growth performance and l-lactic acid production with high optical purity by thermophilic Bacillus coagulans in a lignin-supplemented mixed substrate medium. Glaser R; Venus J N Biotechnol; 2017 Jul; 37(Pt B):180-193. PubMed ID: 28188935 [TBL] [Abstract][Full Text] [Related]
7. Efficient in situ separation and production of L-lactic acid by Bacillus coagulans using weak basic anion-exchange resin. Zhang Y; Qian Z; Liu P; Liu L; Zheng Z; Ouyang J Bioprocess Biosyst Eng; 2018 Feb; 41(2):205-212. PubMed ID: 29075891 [TBL] [Abstract][Full Text] [Related]
8. Highly efficient production of L-lactic acid from xylose by newly isolated Bacillus coagulans C106. Ye L; Zhou X; Hudari MS; Li Z; Wu JC Bioresour Technol; 2013 Mar; 132():38-44. PubMed ID: 23399496 [TBL] [Abstract][Full Text] [Related]
9. Efficient production of L-lactic acid by newly isolated thermophilic Bacillus coagulans WCP10-4 with high glucose tolerance. Zhou X; Ye L; Wu JC Appl Microbiol Biotechnol; 2013 May; 97(10):4309-14. PubMed ID: 23354450 [TBL] [Abstract][Full Text] [Related]
10. Development of Microtiter Plate Culture Method for Rapid Screening of ε-Poly-L-Lysine-Producing Strains. Liu YJ; Chen XS; Zhao JJ; Pan L; Mao ZG Appl Biochem Biotechnol; 2017 Dec; 183(4):1209-1223. PubMed ID: 28540517 [TBL] [Abstract][Full Text] [Related]
11. Strain engineering of Bacillus coagulans with high osmotic pressure tolerance for effective L-lactic acid production from sweet sorghum juice under unsterile conditions. Yan Y; Shan W; Zhang C; Wu Y; Xing X; Chen J; Hu W Bioresour Technol; 2024 May; 400():130648. PubMed ID: 38561153 [TBL] [Abstract][Full Text] [Related]
12. Strain improvement and metabolic flux analysis in the wild-type and a mutant Lactobacillus lactis strain for L(+)-lactic acid production. Bai DM; Zhao XM; Li XG; Xu SM Biotechnol Bioeng; 2004 Dec; 88(6):681-9. PubMed ID: 15532044 [TBL] [Abstract][Full Text] [Related]
13. Open fermentative production of L-lactic acid with high optical purity by thermophilic Bacillus coagulans using excess sludge as nutrient. Ma K; Maeda T; You H; Shirai Y Bioresour Technol; 2014 Jan; 151():28-35. PubMed ID: 24201025 [TBL] [Abstract][Full Text] [Related]
14. Enhanced L-lactic acid production from biomass-derived xylose by a mutant Bacillus coagulans. Zheng Z; Cai C; Jiang T; Zhao M; Ouyang J Appl Biochem Biotechnol; 2014 Aug; 173(7):1896-906. PubMed ID: 24879598 [TBL] [Abstract][Full Text] [Related]
15. Oxygen transfer rates in shaken culture vessels from Fernbach flasks to microtiter plates. Running JA; Bansal K Biotechnol Bioeng; 2016 Aug; 113(8):1729-35. PubMed ID: 26806816 [TBL] [Abstract][Full Text] [Related]
17. Production of extracellular bifidogenic growth stimulator (BGS) from Propionibacterium shermanii using a bioreactor system with a microfiltration module and an on-line controller for lactic acid concentration. Kouya T; Tobita K; Horiuchi M; Nakayama E; Deguchi H; Tanaka T; Taniguchi M J Biosci Bioeng; 2008 Mar; 105(3):184-91. PubMed ID: 18397766 [TBL] [Abstract][Full Text] [Related]
18. Simultaneous saccharification and co-fermentation of crystalline cellulose and sugar cane bagasse hemicellulose hydrolysate to lactate by a thermotolerant acidophilic Bacillus sp. Patel MA; Ou MS; Ingram LO; Shanmugam KT Biotechnol Prog; 2005; 21(5):1453-60. PubMed ID: 16209550 [TBL] [Abstract][Full Text] [Related]
19. Open L-lactic acid fermentation of food refuse using thermophilic Bacillus coagulans and fluorescence in situ hybridization analysis of microflora. Sakai K; Ezaki Y J Biosci Bioeng; 2006 Jun; 101(6):457-63. PubMed ID: 16935246 [TBL] [Abstract][Full Text] [Related]
20. pH measurement and a rational and practical pH control strategy for high throughput cell culture system. Zhou H; Purdie J; Wang T; Ouyang A Biotechnol Prog; 2010; 26(3):872-80. PubMed ID: 20039376 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]