BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 27448108)

  • 21. In vitro study of a new biodegradable nanocomposite based on poly propylene fumarate as bone glue.
    Shahbazi S; Moztarzadeh F; Sadeghi GM; Jafari Y
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():1201-9. PubMed ID: 27612818
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Histological changes of an injectable rhBMP-2/calcium phosphate cement in vertebroplasty of rhesus monkey.
    Bai B; Yin Z; Xu Q; Lew M; Chen Y; Ye J; Wu J; Chen D; Zeng Y
    Spine (Phila Pa 1976); 2009 Aug; 34(18):1887-92. PubMed ID: 19680096
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A poly(propylene fumarate)--calcium phosphate based angiogenic injectable bone cement for femoral head osteonecrosis.
    Chang CH; Liao TC; Hsu YM; Fang HW; Chen CC; Lin FH
    Biomaterials; 2010 May; 31(14):4048-55. PubMed ID: 20172606
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Studies on poly(propylene fumarate-co-ethylene glycol) based bone cement.
    Jayabalan M; Thomas V; Sreelatha PK
    Biomed Mater Eng; 2000; 10(2):57-71. PubMed ID: 11086840
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multimodal analysis of in vivo resorbable CaP bone substitutes by combining histology, SEM, and microcomputed tomography data.
    Sweedy A; Bohner M; Baroud G
    J Biomed Mater Res B Appl Biomater; 2018 May; 106(4):1567-1577. PubMed ID: 28766903
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomechanical evaluation of calcium phosphate-based nanocomposite versus polymethylmethacrylate cement for percutaneous kyphoplasty.
    Lu Q; Liu C; Wang D; Liu H; Yang H; Yang L
    Spine J; 2019 Nov; 19(11):1871-1884. PubMed ID: 31202837
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Strontium-substituted hydroxyapatite stimulates osteogenesis on poly(propylene fumarate) nanocomposite scaffolds.
    Li J; Liu X; Park S; Miller AL; Terzic A; Lu L
    J Biomed Mater Res A; 2019 Mar; 107(3):631-642. PubMed ID: 30422387
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 2. Viability of encapsulated marrow stromal osteoblasts cultured on crosslinking poly(propylene fumarate).
    Payne RG; McGonigle JS; Yaszemski MJ; Yasko AW; Mikos AG
    Biomaterials; 2002 Nov; 23(22):4373-80. PubMed ID: 12219827
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomechanical evaluation of an injectable radiopaque polypropylene fumarate cement for kyphoplasty in a cadaveric osteoporotic vertebral compression fracture model.
    Kim C; Mahar A; Perry A; Massie J; Lu L; Currier B; Yaszemski MJ
    J Spinal Disord Tech; 2007 Dec; 20(8):604-9. PubMed ID: 18046174
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Injectable biodegradable polymer composites based on poly(propylene fumarate) crosslinked with poly(ethylene glycol)-dimethacrylate.
    He S; Yaszemski MJ; Yasko AW; Engel PS; Mikos AG
    Biomaterials; 2000 Dec; 21(23):2389-94. PubMed ID: 11055286
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effects of 3D bioactive glass scaffolds and BMP-2 on bone formation in rat femoral critical size defects and adjacent bones.
    Liu WC; Robu IS; Patel R; Leu MC; Velez M; Chu TM
    Biomed Mater; 2014 Aug; 9(4):045013. PubMed ID: 25065552
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Poly(propylene fumarate)/magnesium calcium phosphate injectable bone composite: Effect of filler size and its weight fraction on mechanical properties.
    Karfarma M; Esnaashary MH; Rezaie HR; Javadpour J; Naimi-Jamal MR
    Proc Inst Mech Eng H; 2019 Nov; 233(11):1165-1174. PubMed ID: 31545134
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Studies on biodegradable and crosslinkable poly(castor oil fumarate)/poly(propylene fumarate) composite adhesive as a potential injectable biomaterial.
    Mitha MK; Jayabalan M
    J Mater Sci Mater Med; 2009 Dec; 20 Suppl 1():S203-11. PubMed ID: 18592346
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanical properties of a biodegradable bone regeneration scaffold.
    Porter BD; Oldham JB; He SL; Zobitz ME; Payne RG; An KN; Currier BL; Mikos AG; Yaszemski MJ
    J Biomech Eng; 2000 Jun; 122(3):286-8. PubMed ID: 10923298
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Injectable biomaterials for minimally invasive orthopedic treatments.
    Jayabalan M; Shalumon KT; Mitha MK
    J Mater Sci Mater Med; 2009 Jun; 20(6):1379-87. PubMed ID: 19160023
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In-situ preparation of poly(propylene fumarate)--hydroxyapatite composite.
    Hakimimehr D; Liu DM; Troczynski T
    Biomaterials; 2005 Dec; 26(35):7297-303. PubMed ID: 16026822
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vitro degradation and fracture toughness of multilayered porous poly(propylene fumarate)/beta-tricalcium phosphate scaffolds.
    Wolfe MS; Dean D; Chen JE; Fisher JP; Han S; Rimnac CM; Mikos AG
    J Biomed Mater Res; 2002 Jul; 61(1):159-64. PubMed ID: 12001259
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fabrication of self-setting β-tricalcium phosphate granular cement.
    Fukuda N; Tsuru K; Mori Y; Ishikawa K
    J Biomed Mater Res B Appl Biomater; 2018 Feb; 106(2):800-807. PubMed ID: 28370963
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of calcium phosphate and calcium sulfate as injectable bone cements in sheep vertebrae.
    Zhu X; Chen X; Chen C; Wang G; Gu Y; Geng D; Mao H; Zhang Z; Yang H
    J Spinal Disord Tech; 2012 Aug; 25(6):333-7. PubMed ID: 21666507
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Remodeling of injectable, low-viscosity polymer/ceramic bone grafts in a sheep femoral defect model.
    Talley AD; McEnery MA; Kalpakci KN; Zienkiewicz KJ; Shimko DA; Guelcher SA
    J Biomed Mater Res B Appl Biomater; 2017 Nov; 105(8):2333-2343. PubMed ID: 27507599
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.