These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
322 related articles for article (PubMed ID: 27448544)
1. A fluorometric biosensor based on functional Au/Ag nanoclusters for real-time monitoring of tyrosinase activity. Ao H; Qian Z; Zhu Y; Zhao M; Tang C; Huang Y; Feng H; Wang A Biosens Bioelectron; 2016 Dec; 86():542-547. PubMed ID: 27448544 [TBL] [Abstract][Full Text] [Related]
2. Functionalized Carbon Quantum Dots with Dopamine for Tyrosinase Activity Monitoring and Inhibitor Screening: In Vitro and Intracellular Investigation. Chai L; Zhou J; Feng H; Tang C; Huang Y; Qian Z ACS Appl Mater Interfaces; 2015 Oct; 7(42):23564-74. PubMed ID: 26440479 [TBL] [Abstract][Full Text] [Related]
3. Ratiometric fluorescence detection of tyrosinase activity and dopamine using thiolate-protected gold nanoclusters. Teng Y; Jia X; Li J; Wang E Anal Chem; 2015; 87(9):4897-902. PubMed ID: 25846058 [TBL] [Abstract][Full Text] [Related]
4. Functionalized carbon quantum dots with dopamine for tyrosinase activity analysis. Hu JJ; Bai XL; Liu YM; Liao X Anal Chim Acta; 2017 Dec; 995():99-105. PubMed ID: 29126486 [TBL] [Abstract][Full Text] [Related]
5. A novel fluorescence biosensor for sensitivity detection of tyrosinase and acid phosphatase based on nitrogen-doped graphene quantum dots. Qu Z; Na W; Liu X; Liu H; Su X Anal Chim Acta; 2018 Jan; 997():52-59. PubMed ID: 29149994 [TBL] [Abstract][Full Text] [Related]
6. A fluorescence "off-on-off" sensing platform based on bimetallic gold/silver nanoclusters for ascorbate oxidase activity monitoring. Wang M; Wang M; Wang G; Su X Analyst; 2020 Feb; 145(3):1001-1007. PubMed ID: 31830153 [TBL] [Abstract][Full Text] [Related]
7. Fluorometric atrazine assay based on the use of nitrogen-doped graphene quantum dots and on inhibition of the activity of tyrosinase. Wang D; Wang P; Liu D; Zhou Z Mikrochim Acta; 2019 Jul; 186(8):527. PubMed ID: 31297616 [TBL] [Abstract][Full Text] [Related]
8. A tyrosinase biosensor based on ordered mesoporous carbon-Au/L-lysine/Au nanoparticles for simultaneous determination of hydroquinone and catechol. Tang L; Zhou Y; Zeng G; Li Z; Liu Y; Zhang Y; Chen G; Yang G; Lei X; Wu M Analyst; 2013 Jun; 138(12):3552-60. PubMed ID: 23671910 [TBL] [Abstract][Full Text] [Related]
9. Fluorescence turn-on sensing of L-cysteine based on FRET between Au-Ag nanoclusters and Au nanorods. Li JJ; Qiao D; Zhao J; Weng GJ; Zhu J; Zhao JW Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun; 217():247-255. PubMed ID: 30947133 [TBL] [Abstract][Full Text] [Related]
10. Analysis of dopamine and tyrosinase activity on ion-sensitive field-effect transistor (ISFET) devices. Freeman R; Elbaz J; Gill R; Zayats M; Willner I Chemistry; 2007; 13(26):7288-93. PubMed ID: 17685382 [TBL] [Abstract][Full Text] [Related]
11. Rapid synthesis of Au/Ag bimetallic nanoclusters with highly biochemical stability and its applications for temperature and ratiometric pH sensing. Sun H; Qing T; He X; Shangguan J; Jia R; Bu H; Huang J; Wang K Anal Chim Acta; 2019 Sep; 1070():88-96. PubMed ID: 31103171 [TBL] [Abstract][Full Text] [Related]
12. Selective fluorescence quenching of papain-Au nanoclusters by self-polymerization of dopamine. Peng J; Han CL; Ling J; Liu CJ; Ding ZT; Cao QE Luminescence; 2018 Feb; 33(1):168-173. PubMed ID: 28960783 [TBL] [Abstract][Full Text] [Related]
13. A "turn-on" fluorescent sensor for ozone detection in ambient air using protein-directed gold nanoclusters. Wu D; Qi W; Liu C; Zhang Q Anal Bioanal Chem; 2017 Apr; 409(10):2539-2546. PubMed ID: 28124753 [TBL] [Abstract][Full Text] [Related]
14. A simple and novel colorimetric assay for tyrosinase and inhibitor screening using 3,3',5,5'-tetramethylbenzidine as a chromogenic probe. Lei C; Zhao XE; Sun J; Yan X; Gao Y; Gao H; Zhu S; Wang H Talanta; 2017 Dec; 175():457-462. PubMed ID: 28842016 [TBL] [Abstract][Full Text] [Related]
15. A study on the electrochemical synthesis of L-DOPA using oxidoreductase enzymes: optimization of an electrochemical process. Rahman SF; Gobikrishnan S; Indrawan N; Park SH; Park JH; Min K; Yoo YJ; Park DH J Microbiol Biotechnol; 2012 Oct; 22(10):1446-51. PubMed ID: 23075798 [TBL] [Abstract][Full Text] [Related]
16. Amperometric detection of catechol using tyrosinase modified electrodes enhanced by the layer-by-layer assembly of gold nanocubes and polyelectrolytes. Karim MN; Lee JE; Lee HJ Biosens Bioelectron; 2014 Nov; 61():147-51. PubMed ID: 24874658 [TBL] [Abstract][Full Text] [Related]
17. Disposable biosensor based on graphene oxide conjugated with tyrosinase assembled gold nanoparticles. Song W; Li DW; Li YT; Li Y; Long YT Biosens Bioelectron; 2011 Mar; 26(7):3181-6. PubMed ID: 21255992 [TBL] [Abstract][Full Text] [Related]
18. Indirect inactivation of tyrosinase in its action on tyrosine. Muñoz-Muñoz JL; Garcia-Molina F; Acosta-Motos JR; Arribas E; Garcia-Ruíz PA; Tudela J; Garcia-Cánovas F; Rodríguez-López JN Acta Biochim Pol; 2011; 58(4):477-88. PubMed ID: 22187676 [TBL] [Abstract][Full Text] [Related]
19. Immobilization of tyrosinase on Fe Arkan E; Karami C; Rafipur R J Biol Inorg Chem; 2019 Oct; 24(7):961-969. PubMed ID: 31359186 [TBL] [Abstract][Full Text] [Related]
20. Production and utilization of hydrogen peroxide associated with melanogenesis and tyrosinase-mediated oxidations of DOPA and dopamine. Mastore M; Kohler L; Nappi AJ FEBS J; 2005 May; 272(10):2407-15. PubMed ID: 15885091 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]