These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 27449020)

  • 41. Comparative performances of microbial capacitive deionization cell and microbial fuel cell fed with produced water from the Bakken shale.
    Shrestha N; Chilkoor G; Wilder J; Ren ZJ; Gadhamshetty V
    Bioelectrochemistry; 2018 Jun; 121():56-64. PubMed ID: 29413865
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Performance and microbial diversity of microbial fuel cells coupled with different cathode types during simultaneous azo dye decolorization and electricity generation.
    Hou B; Hu Y; Sun J
    Bioresour Technol; 2012 May; 111():105-10. PubMed ID: 22386629
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Quantification of the internal resistance distribution of microbial fuel cells.
    Fan Y; Sharbrough E; Liu H
    Environ Sci Technol; 2008 Nov; 42(21):8101-7. PubMed ID: 19031909
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Performance and microbial ecology of air-cathode microbial fuel cells with layered electrode assemblies.
    Butler CS; Nerenberg R
    Appl Microbiol Biotechnol; 2010 May; 86(5):1399-408. PubMed ID: 20098985
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Composition and measurement of the apparent internal resistance in microbial fuel cell].
    Liang P; Fan MZ; Cao XX; Huang X; Wang C
    Huan Jing Ke Xue; 2007 Aug; 28(8):1894-8. PubMed ID: 17926430
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A dual chamber microbial fuel cell based biosensor for monitoring copper and arsenic in municipal wastewater.
    Do MH; Ngo HH; Guo W; Chang SW; Nguyen DD; Pandey A; Sharma P; Varjani S; Nguyen TAH; Hoang NB
    Sci Total Environ; 2022 Mar; 811():152261. PubMed ID: 34902426
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Boosting microfluidic microbial fuel cells performance via investigating electron transfer mechanisms, metal-based electrodes, and magnetic field effect.
    Shirkosh M; Hojjat Y; Mardanpour MM
    Sci Rep; 2022 May; 12(1):7417. PubMed ID: 35523838
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Simultaneous enhancement of heavy metal removal and electricity generation in soil microbial fuel cell.
    Zhang J; Cao X; Wang H; Long X; Li X
    Ecotoxicol Environ Saf; 2020 Apr; 192():110314. PubMed ID: 32061983
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Stable operation of microbial fuel cells at low temperatures (5–10 °C) with light exposure and its anodic microbial analysis.
    Zhang L; Shen J; Wang L; Ding L; Xu K; Ren H
    Bioprocess Biosyst Eng; 2014 May; 37(5):819-27. PubMed ID: 24078184
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Impact of initial biofilm growth on the anode impedance of microbial fuel cells.
    Ramasamy RP; Ren Z; Mench MM; Regan JM
    Biotechnol Bioeng; 2008 Sep; 101(1):101-8. PubMed ID: 18646217
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Efficient electricity generation from sewage sludge using biocathode microbial fuel cell.
    Zhang G; Zhao Q; Jiao Y; Wang K; Lee DJ; Ren N
    Water Res; 2012 Jan; 46(1):43-52. PubMed ID: 22078254
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bioelectricity production from wastewater treatment in dual chambered microbial fuel cell (MFC) using selectively enriched mixed microflora: Effect of catholyte.
    Venkata Mohan S; Saravanan R; Raghavulu SV; Mohanakrishna G; Sarma PN
    Bioresour Technol; 2008 Feb; 99(3):596-603. PubMed ID: 17321135
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A novel configuration of microbial fuel cell stack bridged internally through an extra cation exchange membrane.
    Liu Z; Liu J; Zhang S; Su Z
    Biotechnol Lett; 2008 Jun; 30(6):1017-23. PubMed ID: 18259873
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Removal of copper from aqueous solution by electrodeposition in cathode chamber of microbial fuel cell.
    Tao HC; Liang M; Li W; Zhang LJ; Ni JR; Wu WM
    J Hazard Mater; 2011 May; 189(1-2):186-92. PubMed ID: 21377788
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evaluation of hydrolysis and fermentation rates in microbial fuel cells.
    Velasquez-Orta SB; Yu E; Katuri KP; Head IM; Curtis TP; Scott K
    Appl Microbiol Biotechnol; 2011 Apr; 90(2):789-98. PubMed ID: 21347728
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of inoculum types on bacterial adhesion and power production in microbial fuel cells.
    Jiang D; Li B; Jia W; Lei Y
    Appl Biochem Biotechnol; 2010 Jan; 160(1):182-96. PubMed ID: 19214793
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Copper recovery from printed circuit boards leaching solution with bioelectricity generation using microbial fuel cell.
    Sobhani D; Rastegar SO; Khamforoush M; Gu T; Khosravi A
    Bioprocess Biosyst Eng; 2023 Jul; 46(7):1021-1031. PubMed ID: 37225874
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Population dynamics and current-generation mechanisms in cassette-electrode microbial fuel cells.
    Watanabe K; Miyahara M; Shimoyama T; Hashimoto K
    Appl Microbiol Biotechnol; 2011 Dec; 92(6):1307-14. PubMed ID: 21983705
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Metal removal and recovery using bioelectrochemical technology: The major determinants and opportunities for synchronic wastewater treatment and energy production.
    Kaushik A; Singh A
    J Environ Manage; 2020 Sep; 270():110826. PubMed ID: 32721300
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Scalable microbial fuel cell (MFC) stack for continuous real wastewater treatment.
    Zhuang L; Zheng Y; Zhou S; Yuan Y; Yuan H; Chen Y
    Bioresour Technol; 2012 Feb; 106():82-8. PubMed ID: 22197329
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.