These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 27449257)

  • 1. Targeting Non-Catalytic Cysteine Residues Through Structure-Guided Drug Discovery.
    Hallenbeck KK; Turner DM; Renslo AR; Arkin MR
    Curr Top Med Chem; 2017; 17(1):4-15. PubMed ID: 27449257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactive-cysteine profiling for drug discovery.
    Maurais AJ; Weerapana E
    Curr Opin Chem Biol; 2019 Jun; 50():29-36. PubMed ID: 30897495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovery of Non-Cysteine-Targeting Covalent Inhibitors by Activity-Based Proteomic Screening with a Cysteine-Reactive Probe.
    Jung Y; Noda N; Takaya J; Abo M; Toh K; Tajiri K; Cui C; Zhou L; Sato SI; Uesugi M
    ACS Chem Biol; 2022 Feb; 17(2):340-347. PubMed ID: 35076225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Throughput Kinetic Analysis for Target-Directed Covalent Ligand Discovery.
    Craven GB; Affron DP; Allen CE; Matthies S; Greener JG; Morgan RML; Tate EW; Armstrong A; Mann DJ
    Angew Chem Int Ed Engl; 2018 May; 57(19):5257-5261. PubMed ID: 29480525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applications of Reactive Cysteine Profiling.
    Backus KM
    Curr Top Microbiol Immunol; 2019; 420():375-417. PubMed ID: 30105421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cysteine-specific Chemical Proteomics: From Target Identification to Drug Discovery.
    Hoch DG; Abegg D; Wang C; Shuster A; Adibekian A
    Chimia (Aarau); 2016 Nov; 70(11):764-767. PubMed ID: 28661335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diverse Redoxome Reactivity Profiles of Carbon Nucleophiles.
    Gupta V; Yang J; Liebler DC; Carroll KS
    J Am Chem Soc; 2017 Apr; 139(15):5588-5595. PubMed ID: 28355876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cysteinome: The first comprehensive database for proteins with targetable cysteine and their covalent inhibitors.
    Wu S; Luo Howard H; Wang H; Zhao W; Hu Q; Yang Y
    Biochem Biophys Res Commun; 2016 Sep; 478(3):1268-73. PubMed ID: 27553277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beyond cysteine: recent developments in the area of targeted covalent inhibition.
    Mukherjee H; Grimster NP
    Curr Opin Chem Biol; 2018 Jun; 44():30-38. PubMed ID: 29857316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emerging and Re-Emerging Warheads for Targeted Covalent Inhibitors: Applications in Medicinal Chemistry and Chemical Biology.
    Gehringer M; Laufer SA
    J Med Chem; 2019 Jun; 62(12):5673-5724. PubMed ID: 30565923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical Analysis and Prediction of Covalent Ligand Targeted Cysteine Residues.
    Zhang W; Pei J; Lai L
    J Chem Inf Model; 2017 Jun; 57(6):1453-1460. PubMed ID: 28510428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic Optimization of Lysine-Targeting Covalent Inhibitors of HSP72.
    Pettinger J; Carter M; Jones K; Cheeseman MD
    J Med Chem; 2019 Dec; 62(24):11383-11398. PubMed ID: 31725295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structures of SCP2-thiolases of Trypanosomatidae, human pathogens causing widespread tropical diseases: the importance for catalysis of the cysteine of the unique HDCF loop.
    Harijan RK; Kiema TR; Karjalainen MP; Janardan N; Murthy MR; Weiss MS; Michels PA; Wierenga RK
    Biochem J; 2013 Oct; 455(1):119-30. PubMed ID: 23909465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the Structural Mechanism of Covalently Bound E3 Ubiquitin Ligase: Catalytic or Allosteric Inhibition?
    Bjij I; Khan S; Betz R; Cherqaoui D; Soliman MES
    Protein J; 2018 Dec; 37(6):500-509. PubMed ID: 30232697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiparameter Kinetic Analysis for Covalent Fragment Optimization by Using Quantitative Irreversible Tethering (qIT).
    Craven GB; Affron DP; Kösel T; Wong TLM; Jukes ZH; Liu CT; Morgan RML; Armstrong A; Mann DJ
    Chembiochem; 2020 Dec; 21(23):3417-3422. PubMed ID: 32659037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expanding the Armory: Predicting and Tuning Covalent Warhead Reactivity.
    Lonsdale R; Burgess J; Colclough N; Davies NL; Lenz EM; Orton AL; Ward RA
    J Chem Inf Model; 2017 Dec; 57(12):3124-3137. PubMed ID: 29131621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein cysteine modifications: (2) reactivity specificity and topics of medicinal chemistry and protein engineering.
    Nagahara N; Matsumura T; Okamoto R; Kajihara Y
    Curr Med Chem; 2009; 16(34):4490-501. PubMed ID: 19903155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Medicinal Chemistry Projects Requiring Imaginative Structure-Based Drug Design Methods.
    Moitessier N; Pottel J; Therrien E; Englebienne P; Liu Z; Tomberg A; Corbeil CR
    Acc Chem Res; 2016 Sep; 49(9):1646-57. PubMed ID: 27529781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Covalent targeting of acquired cysteines in cancer.
    Visscher M; Arkin MR; Dansen TB
    Curr Opin Chem Biol; 2016 Feb; 30():61-67. PubMed ID: 26629855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Covalent docking of large libraries for the discovery of chemical probes.
    London N; Miller RM; Krishnan S; Uchida K; Irwin JJ; Eidam O; Gibold L; Cimermančič P; Bonnet R; Shoichet BK; Taunton J
    Nat Chem Biol; 2014 Dec; 10(12):1066-72. PubMed ID: 25344815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.