BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 27449474)

  • 21. Preparation and characterization of novel chitosan and β-cyclodextrin polymer sponges for wound dressing applications.
    Flores C; Lopez M; Tabary N; Neut C; Chai F; Betbeder D; Herkt C; Cazaux F; Gaucher V; Martel B; Blanchemain N
    Carbohydr Polym; 2017 Oct; 173():535-546. PubMed ID: 28732897
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combining Raman and infrared spectroscopy as a powerful tool for the structural elucidation of cyclodextrin-based polymeric hydrogels.
    Venuti V; Rossi B; D'Amico F; Mele A; Castiglione F; Punta C; Melone L; Crupi V; Majolino D; Trotta F; Gessini A; Masciovecchio C
    Phys Chem Chem Phys; 2015 Apr; 17(15):10274-82. PubMed ID: 25798878
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cyclodextrin Based Nanosponges: A Multidimensional Drug Delivery System and its Biomedical Applications.
    Mane PT; Wakure BS; Wakte PS
    Curr Drug Deliv; 2021; 18(10):1467-1493. PubMed ID: 33902410
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Solid-state characterization of sertraline base-β-cyclodextrin inclusion complex.
    Ogawa N; Hashimoto T; Furuishi T; Nagase H; Endo T; Yamamoto H; Kawashima Y; Ueda H
    J Pharm Biomed Anal; 2015 Mar; 107():265-72. PubMed ID: 25637819
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cyclodextrin, an efficient tool for trans-anethole encapsulation: chromatographic, spectroscopic, thermal and structural studies.
    Kfoury M; Auezova L; Greige-Gerges H; Ruellan S; Fourmentin S
    Food Chem; 2014 Dec; 164():454-61. PubMed ID: 24996357
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Drug carrier systems based on water-soluble cationic beta-cyclodextrin polymers.
    Li J; Xiao H; Li J; Zhong Y
    Int J Pharm; 2004 Jul; 278(2):329-42. PubMed ID: 15196638
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanostructures formed by cyclodextrin covered procainamide through supramolecular self assembly--spectral and molecular modeling study.
    Rajendiran N; Mohandoss T; Sankaranarayanan RK
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt B():875-83. PubMed ID: 25459611
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cyclodextrin functionalized graphene nanosheets with high supramolecular recognition capability: synthesis and host-guest inclusion for enhanced electrochemical performance.
    Guo Y; Guo S; Ren J; Zhai Y; Dong S; Wang E
    ACS Nano; 2010 Jul; 4(7):4001-10. PubMed ID: 20583782
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cyclodextrin based nanosponges for pharmaceutical use: a review.
    Tejashri G; Amrita B; Darshana J
    Acta Pharm; 2013 Sep; 63(3):335-58. PubMed ID: 24152895
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cyclodextrin-Mediated Hierarchical Self-Assembly and Its Potential in Drug Delivery Applications.
    Antoniuk I; Amiel C
    J Pharm Sci; 2016 Sep; 105(9):2570-2588. PubMed ID: 27342436
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cyclodextrin-based nanosponges: A critical review.
    Sherje AP; Dravyakar BR; Kadam D; Jadhav M
    Carbohydr Polym; 2017 Oct; 173():37-49. PubMed ID: 28732878
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamics and interactions of ibuprofen in cyclodextrin nanosponges by solid-state NMR spectroscopy.
    Ferro M; Castiglione F; Pastori N; Punta C; Melone L; Panzeri W; Rossi B; Trotta F; Mele A
    Beilstein J Org Chem; 2017; 13():182-194. PubMed ID: 28228859
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Removing Control of Cyclodextrin-Drug Complexes Using High Affinity Molecule.
    Kim YH; Kim ST; Jee JP; Kim DY; Kang D; Kim K; Park SY; Sim T; Cho KH; Jang DJ
    J Nanosci Nanotechnol; 2018 Feb; 18(2):898-901. PubMed ID: 29448513
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modulating drug loading and release profile of beta-cyclodextrin polymers by means of cross-linked degree.
    Wang QF; Li SM; Zhang YY; Zhang H
    Yao Xue Xue Bao; 2011 Feb; 46(2):221-6. PubMed ID: 21539152
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural characterization and physical properties of P2O5-CaO-Na2O-TiO2 glasses by Fourier transform infrared, Raman and solid-state magic angle spinning nuclear magnetic resonance spectroscopies.
    Kiani A; Hanna JV; King SP; Rees GJ; Smith ME; Roohpour N; Salih V; Knowles JC
    Acta Biomater; 2012 Jan; 8(1):333-40. PubMed ID: 21930253
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Toward an understanding of the thermosensitive behaviour of pH-responsive hydrogels based on cyclodextrins.
    Rossi B; Venuti V; D'Amico F; Gessini A; Mele A; Punta C; Melone L; Crupi V; Majolino D; Trotta F; Masciovecchio C
    Soft Matter; 2015 Aug; 11(29):5862-71. PubMed ID: 26107102
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Water and polymer dynamics in a model polysaccharide hydrogel: the role of hydrophobic/hydrophilic balance.
    Rossi B; Venuti V; D'Amico F; Gessini A; Castiglione F; Mele A; Punta C; Melone L; Crupi V; Majolino D; Trotta F; Masciovecchio C
    Phys Chem Chem Phys; 2015 Jan; 17(2):963-71. PubMed ID: 25407481
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cyclodextrin containing biodegradable particles: from preparation to drug delivery applications.
    Zafar N; Fessi H; Elaissari A
    Int J Pharm; 2014 Jan; 461(1-2):351-66. PubMed ID: 24342710
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analytical techniques for characterization of cyclodextrin complexes in the solid state: A review.
    Mura P
    J Pharm Biomed Anal; 2015 Sep; 113():226-38. PubMed ID: 25743620
    [TBL] [Abstract][Full Text] [Related]  

  • 40. insights into novel supramolecular complexes of two solid forms of norfloxacin and β-cyclodextrin.
    Chattah AK; Mroue KH; Pfund LY; Ramamoorthy A; Longhi MR; Garnero C
    J Pharm Sci; 2013 Oct; 102(10):3717-24. PubMed ID: 23904189
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.