These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
310 related articles for article (PubMed ID: 27449931)
1. Synchrony of the Reach and the Grasp in pantomime reach-to-grasp. Kuntz JR; Whishaw IQ Exp Brain Res; 2016 Nov; 234(11):3291-3303. PubMed ID: 27449931 [TBL] [Abstract][Full Text] [Related]
2. Gaze anchoring guides real but not pantomime reach-to-grasp: support for the action-perception theory. Kuntz JR; Karl JM; Doan JB; Whishaw IQ Exp Brain Res; 2018 Apr; 236(4):1091-1103. PubMed ID: 29441469 [TBL] [Abstract][Full Text] [Related]
3. Two types of memory-based (pantomime) reaches distinguished by gaze anchoring in reach-to-grasp tasks. Kuntz JR; Karl JM; Doan JB; Grohs M; Whishaw IQ Behav Brain Res; 2020 Mar; 381():112438. PubMed ID: 31857149 [TBL] [Abstract][Full Text] [Related]
4. Nonvisual learning of intrinsic object properties in a reaching task dissociates grasp from reach. Karl JM; Schneider LR; Whishaw IQ Exp Brain Res; 2013 Apr; 225(4):465-77. PubMed ID: 23288327 [TBL] [Abstract][Full Text] [Related]
5. Reach and Grasp reconfigurations reveal that proprioception assists reaching and hapsis assists grasping in peripheral vision. Hall LA; Karl JM; Thomas BL; Whishaw IQ Exp Brain Res; 2014 Sep; 232(9):2807-19. PubMed ID: 24792500 [TBL] [Abstract][Full Text] [Related]
6. Dissociation of the Reach and the Grasp in the destriate (V1) monkey Helen: a new anatomy for the dual visuomotor channel theory of reaching. Whishaw IQ; Karl JM; Humphrey NK Exp Brain Res; 2016 Aug; 234(8):2351-62. PubMed ID: 27056084 [TBL] [Abstract][Full Text] [Related]
7. Gender differences in non-standard mapping tasks: A kinematic study using pantomimed reach-to-grasp actions. Copley-Mills J; Connolly JD; Cavina-Pratesi C Cortex; 2016 Sep; 82():244-254. PubMed ID: 27410715 [TBL] [Abstract][Full Text] [Related]
8. Increasing task precision demands reveals that the reach and grasp remain subject to different perception-action constraints in 12-month-old human infants. Karl JM; Slack BM; Wilson AM; Wilson CA; Bertoli ME Infant Behav Dev; 2019 Nov; 57():101382. PubMed ID: 31580995 [TBL] [Abstract][Full Text] [Related]
9. Touch the table before the target: contact with an underlying surface may assist the development of precise visually controlled reach and grasp movements in human infants. Karl JM; Wilson AM; Bertoli ME; Shubear NS Exp Brain Res; 2018 Aug; 236(8):2185-2207. PubMed ID: 29797280 [TBL] [Abstract][Full Text] [Related]
10. Impairment of pronation, supination, and body co-ordination in reach-to-grasp tasks in human Parkinson's disease (PD) reveals homology to deficits in animal models. Whishaw IQ; Suchowersky O; Davis L; Sarna J; Metz GA; Pellis SM Behav Brain Res; 2002 Jul; 133(2):165-76. PubMed ID: 12110450 [TBL] [Abstract][Full Text] [Related]
11. Encoding of Both Reaching and Grasping Kinematics in Dorsal and Ventral Premotor Cortices. Takahashi K; Best MD; Huh N; Brown KA; Tobaa AA; Hatsopoulos NG J Neurosci; 2017 Feb; 37(7):1733-1746. PubMed ID: 28077725 [TBL] [Abstract][Full Text] [Related]
12. Haptic grasping configurations in early infancy reveal different developmental profiles for visual guidance of the Reach versus the Grasp. Karl JM; Whishaw IQ Exp Brain Res; 2014 Oct; 232(10):3301-16. PubMed ID: 24969613 [TBL] [Abstract][Full Text] [Related]
13. Gaze strategies during visually-guided versus memory-guided grasping. Prime SL; Marotta JJ Exp Brain Res; 2013 Mar; 225(2):291-305. PubMed ID: 23239197 [TBL] [Abstract][Full Text] [Related]
14. The contribution of the reach and the grasp to shaping brain and behaviour. Whishaw IQ; Karl JM Can J Exp Psychol; 2014 Dec; 68(4):223-35. PubMed ID: 25528562 [TBL] [Abstract][Full Text] [Related]
15. Control of aperture closure initiation during trunk-assisted reach-to-grasp movements. Rand MK; Van Gemmert AW; Hossain AB; Shimansky YP; Stelmach GE Exp Brain Res; 2012 Jun; 219(2):293-304. PubMed ID: 22526948 [TBL] [Abstract][Full Text] [Related]
16. Human string-pulling with and without a string: movement, sensory control, and memory. Singh S; Mandziak A; Barr K; Blackwell AA; Mohajerani MH; Wallace DG; Whishaw IQ Exp Brain Res; 2019 Dec; 237(12):3431-3447. PubMed ID: 31734786 [TBL] [Abstract][Full Text] [Related]
17. Pantomime-grasping: the 'return' of haptic feedback supports the absolute specification of object size. Davarpanah Jazi S; Yau M; Westwood DA; Heath M Exp Brain Res; 2015 Jul; 233(7):2029-40. PubMed ID: 25869741 [TBL] [Abstract][Full Text] [Related]
18. Hand shaping using hapsis resembles visually guided hand shaping. Karl JM; Sacrey LA; Doan JB; Whishaw IQ Exp Brain Res; 2012 May; 219(1):59-74. PubMed ID: 22437961 [TBL] [Abstract][Full Text] [Related]
19. Role of vision in aperture closure control during reach-to-grasp movements. Rand MK; Lemay M; Squire LM; Shimansky YP; Stelmach GE Exp Brain Res; 2007 Aug; 181(3):447-60. PubMed ID: 17476491 [TBL] [Abstract][Full Text] [Related]
20. Development of rotational movements, hand shaping, and accuracy in advance and withdrawal for the reach-to-eat movement in human infants aged 6-12 months. Sacrey LA; Karl JM; Whishaw IQ Infant Behav Dev; 2012 Jun; 35(3):543-60. PubMed ID: 22728335 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]