BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 2745002)

  • 21. Dynamic changes in the organophosphate profile of the experimental galactose-induced cataract.
    Greiner JV; Kopp SJ; Sanders DR; Glonek T
    Invest Ophthalmol Vis Sci; 1982 May; 22(5):613-24. PubMed ID: 7076407
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of pregnancy on development of galactose-induced cataract in rat.
    Teshima R; Taura T; Okamura R
    Jpn J Ophthalmol; 1993; 37(1):56-61. PubMed ID: 8320866
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Galactose cataract prevention with sorbinil, an aldose reductase inhibitor: a light microscopic study.
    Datiles M; Fukui H; Kuwabara T; Kinoshita JH
    Invest Ophthalmol Vis Sci; 1982 Feb; 22(2):174-9. PubMed ID: 6799419
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A physiological level of ascorbate inhibits galactose cataract in guinea pigs by decreasing polyol accumulation in the lens epithelium: a dehydroascorbate-linked mechanism.
    Yokoyama T; Sasaki H; Giblin FJ; Reddy VN
    Exp Eye Res; 1994 Feb; 58(2):207-18. PubMed ID: 8157113
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Magnetic resonance study of virgin and explanted silicone breast prostheses. Can proton relaxation times be used to monitor their biostability?
    Dorne L; Stroman P; Rolland C; Auger M; Alikacem N; Bronskill M; Grondin P; King MW; Guidoin R
    ASAIO J; 1994; 40(3):M625-31. PubMed ID: 8555590
    [TBL] [Abstract][Full Text] [Related]  

  • 26. T 1 rho-relaxation mapping of human femoral-tibial cartilage in vivo.
    Regatte RR; Akella SV; Wheaton AJ; Borthakur A; Kneeland JB; Reddy R
    J Magn Reson Imaging; 2003 Sep; 18(3):336-41. PubMed ID: 12938129
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proton magnetic resonance imaging of the ocular lens.
    Cheng HM; Yeh LI; Barnett P; Miglior S; Eagon JC; González G; Brady TJ
    Exp Eye Res; 1987 Dec; 45(6):875-82. PubMed ID: 3428403
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Present possibilities of utilizing nuclear magnetic resonance tomography in the examination of the human lens].
    Gutsze A; Jeśmanowicz A; Kałuzny J; Mierzejewski A
    Klin Oczna; 1988; 90 Suppl():489-90. PubMed ID: 3275370
    [No Abstract]   [Full Text] [Related]  

  • 29. [The early biochemical changes of cataractous lenses of rats cultured in vitro].
    Dong D; Lu A; Liu Y; Jia W; Hou W
    Zhonghua Yan Ke Za Zhi; 2000 Sep; 36(5):344-7, 21. PubMed ID: 11853625
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Organophosphate metabolic changes in the rat lens during the development of galactose-induced cataract.
    Sakagami K; Igarashi H; Tanaka K; Yoshida A
    Hokkaido Igaku Zasshi; 1999 Nov; 74(6):457-66. PubMed ID: 10642892
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Magnetic resonance imaging of experimental cerebral ischemia: correlations between NMR parameters and water content].
    Kato H; Kogure K; Ohtomo H; Izumiyama M; Tobita M; Matsui S; Yamamoto E; Kohno H; Ikebe Y; Watanabe T
    No To Shinkei; 1986 Mar; 38(3):295-302. PubMed ID: 3707779
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of tissue damage in multiple sclerosis by nuclear magnetic resonance.
    Barkhof F; van Walderveen M
    Philos Trans R Soc Lond B Biol Sci; 1999 Oct; 354(1390):1675-86. PubMed ID: 10603619
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Measurements of magnetic relaxation times of normal tissue and renal cell carcinoma.
    Suzuki M; Kishi H; Aso Y; Yashiro N; Iio M
    Radiat Med; 1988; 6(6):263-6. PubMed ID: 3249817
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Time-related changes of radiofrequency ablation lesion in the normal rabbit liver: findings of magnetic resonance imaging and histopathology.
    Tsuda M; Rikimaru H; Majima K; Yamada T; Saito H; Ishibashi T; Takahashi S; Miyachi H; Endoh M; Yamada S
    Invest Radiol; 2003 Aug; 38(8):525-31. PubMed ID: 12874519
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Studies of the changes in crystalline lens transparency in rabbits with experimental cataract].
    Prost M; Gerkowicz K; Katski W; Gerkowicz M; Jedrzejewski D
    Klin Oczna; 1991 Dec; 93(12):321-4. PubMed ID: 1819665
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vivo magnetic resonance imaging of the blue crab, Callinectes sapidus: effect of cadmium accumulation in tissues on proton relaxation properties.
    Brouwer M; Engel DW; Bonaventura J; Johnson GA
    J Exp Zool; 1992 Aug; 263(1):32-40. PubMed ID: 1645119
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Magnetic resonance imaging of the galactosemic dog eye using magnetization transfer contrast.
    Mori K; Lizak MJ; Ceckler TL; Balaban RS; Kador PF
    Curr Eye Res; 1995 Nov; 14(11):1035-40. PubMed ID: 8585933
    [TBL] [Abstract][Full Text] [Related]  

  • 38. NMR pulse relaxation studies on the normal aging and cataractous lens.
    Lerman S; Moran M
    Exp Eye Res; 1989 Mar; 48(3):451-9. PubMed ID: 2924825
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phototoxicity involving the ocular lens: in vivo and in vitro studies.
    Lerman S; Mandal K; Misra B; Schechter A; Schenck J
    Photochem Photobiol; 1991 Feb; 53(2):243-7. PubMed ID: 2011629
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Magnetic resonance imaging of the rabbit eye. Improved anatomical detail using magnetization transfer contrast.
    Ceckler TL; Karino K; Kador PF; Balaban RS
    Invest Ophthalmol Vis Sci; 1991 Nov; 32(12):3109-13. PubMed ID: 1938286
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.