These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 27450045)

  • 1. Principal components of wrist circumduction from electromagnetic surgical tracking.
    Rasquinha BJ; Rainbow MJ; Zec ML; Pichora DR; Ellis RE
    Int J Comput Assist Radiol Surg; 2017 Feb; 12(2):315-324. PubMed ID: 27450045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupling between wrist flexion-extension and radial-ulnar deviation.
    Li ZM; Kuxhaus L; Fisk JA; Christophel TH
    Clin Biomech (Bristol, Avon); 2005 Feb; 20(2):177-83. PubMed ID: 15621323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ulnar Extension Coupling in Functional Wrist Kinematics During Hand Activities of Daily Living.
    Nadeem M; Loss JG; Li ZM; Seitz WH
    J Hand Surg Am; 2022 Feb; 47(2):187.e1-187.e13. PubMed ID: 34049729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wrist circumduction reduced by finger constraints.
    Gehrmann SV; Kaufmann RA; Li ZM
    J Hand Surg Am; 2008 Oct; 33(8):1287-92. PubMed ID: 18929190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical function requirements of the wrist. Circumduction versus flexion/abduction range of motion.
    Gracia-Ibáñez V; Sancho-Bru JL; Vergara M; Roda-Sales A; Jarque-Bou NJ; Bayarri-Porcar V
    J Biomech; 2020 Sep; 110():109975. PubMed ID: 32827773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in patterns of scaphoid and lunate motion during functional arcs of wrist motion induced by ligament division.
    Werner FW; Short WH; Green JK
    J Hand Surg Am; 2005 Nov; 30(6):1156-60. PubMed ID: 16344171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of an objective device for assessing circumductive wrist motion.
    Franko OI; Lal S; Pauyo T; Alexander M; Zurakowski D; Day C
    J Hand Surg Am; 2008 Oct; 33(8):1293-300. PubMed ID: 18929191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of velocity, range, and smoothness of wrist circumduction using flexible electrogoniometry.
    Singh HP; Dias JJ; Slijper H; Hovius S
    J Hand Surg Am; 2012 Nov; 37(11):2331-9. PubMed ID: 23101531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of wrist motion and hand orientation on muscle forces: A physiologic wrist simulator study.
    Shah DS; Middleton C; Gurdezi S; Horwitz MD; Kedgley AE
    J Biomech; 2017 Jul; 60():232-237. PubMed ID: 28669547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy of an electrogoniometer relative to optical motion tracking for quantifying wrist range of motion.
    McHugh BP; Morton AM; Akhbari B; Molino J; Crisco JJ
    J Med Eng Technol; 2020 Feb; 44(2):49-54. PubMed ID: 31997679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wrist motion analysis in scaphoid nonunion.
    Gehrmann S; Roeger T; Kaufmann R; Schaedle A; Lögters T; Windolf J
    Eur J Trauma Emerg Surg; 2016 Feb; 42(1):11-4. PubMed ID: 26817762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carpal bone kinematics in combined wrist joint motions may differ from the bone kinematics during simple wrist motions.
    Upal MA
    Biomed Sci Instrum; 2003; 39():272-7. PubMed ID: 12724906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic assessment of wrist after proximal row carpectomy and 4-corner fusion.
    Singh HP; Brinkhorst ME; Dias JJ; Moojen T; Hovius S; Bhowal B
    J Hand Surg Am; 2014 Dec; 39(12):2424-33. PubMed ID: 25443170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical motion capture accuracy is task-dependent in assessing wrist motion.
    McHugh B; Akhbari B; Morton AM; Moore DC; Crisco JJ
    J Biomech; 2021 May; 120():110362. PubMed ID: 33752132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 4-corner arthrodesis and proximal row carpectomy: a biomechanical comparison of wrist motion and tendon forces.
    Debottis DP; Werner FW; Sutton LG; Harley BJ
    J Hand Surg Am; 2013 May; 38(5):893-8. PubMed ID: 23528428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The relative contribution of selected carpal bones to global wrist motion during simulated planar and out-of-plane wrist motion.
    Werner FW; Short WH; Fortino MD; Palmer AK
    J Hand Surg Am; 1997 Jul; 22(4):708-13. PubMed ID: 9260631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of wrist bone motion before and after SL-ligament resection.
    Eschweiler J; Stromps JP; Rath B; Pallua N; Radermacher K
    Biomed Tech (Berl); 2016 Jun; 61(3):345-57. PubMed ID: 26402881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo three-dimensional kinematics of the midcarpal joint of the wrist.
    Moritomo H; Murase T; Goto A; Oka K; Sugamoto K; Yoshikawa H
    J Bone Joint Surg Am; 2006 Mar; 88(3):611-21. PubMed ID: 16510829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasound Evaluation of the Transverse Movement of the Flexor Pollicis Longus Tendon on the Distal Radius during Wrist and Finger Motion in Healthy Volunteers.
    Nanno M; Sawaizumi T; Kodera N; Tomori Y; Takai S
    J Nippon Med Sch; 2015; 82(5):220-8. PubMed ID: 26568388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of helical axes, pivot and envelope in active wrist circumduction.
    Salvia P; Woestyn L; David JH; Feipel V; Van S; Jan S; Klein P; Rooze M
    Clin Biomech (Bristol, Avon); 2000 Feb; 15(2):103-11. PubMed ID: 10627326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.