These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
449 related articles for article (PubMed ID: 27450332)
1. Ag loaded WO3 nanoplates for efficient photocatalytic degradation of sulfanilamide and their bactericidal effect under visible light irradiation. Zhu W; Liu J; Yu S; Zhou Y; Yan X J Hazard Mater; 2016 Nov; 318():407-416. PubMed ID: 27450332 [TBL] [Abstract][Full Text] [Related]
2. Preparation and characterization of zinc and copper co-doped WO3 nanoparticles: Application in photocatalysis and photobiology. Mohammadi S; Sohrabi M; Golikand AN; Fakhri A J Photochem Photobiol B; 2016 Aug; 161():217-21. PubMed ID: 27262854 [TBL] [Abstract][Full Text] [Related]
3. Hierarchically plasmonic photocatalysts of Ag/AgCl nanocrystals coupled with single-crystalline WO₃ nanoplates. Chen D; Li T; Chen Q; Gao J; Fan B; Li J; Li X; Zhang R; Sun J; Gao L Nanoscale; 2012 Sep; 4(17):5431-9. PubMed ID: 22836730 [TBL] [Abstract][Full Text] [Related]
4. Preparation of ordered mesoporous Ag/WO3 and its highly efficient degradation of acetaldehyde under visible-light irradiation. Sun S; Wang W; Zeng S; Shang M; Zhang L J Hazard Mater; 2010 Jun; 178(1-3):427-33. PubMed ID: 20172648 [TBL] [Abstract][Full Text] [Related]
5. Plasmonic Ag decorated graphitic carbon nitride sheets with enhanced visible-light response for photocatalytic water disinfection and organic pollutant removal. Wei F; Li J; Dong C; Bi Y; Han X Chemosphere; 2020 Mar; 242():125201. PubMed ID: 31677514 [TBL] [Abstract][Full Text] [Related]
6. Photocatalytic removal of gaseous nitrogen oxides using WO Mendoza JA; Lee DH; Kang JH Chemosphere; 2017 Sep; 182():539-546. PubMed ID: 28521170 [TBL] [Abstract][Full Text] [Related]
7. Tungsten trioxide as a visible light photocatalyst for volatile organic carbon removal. Wicaksana Y; Liu S; Scott J; Amal R Molecules; 2014 Oct; 19(11):17747-62. PubMed ID: 25365299 [TBL] [Abstract][Full Text] [Related]
8. Photo-catalytic Killing of HeLa Cancer Cells Using Facile Synthesized Pure and Ag Loaded WO AbuMousa RA; Baig U; Gondal MA; AlSalhi MS; Alqahtani FY; Akhtar S; Aleanizy FS; Dastageer MA Sci Rep; 2018 Oct; 8(1):15224. PubMed ID: 30323306 [TBL] [Abstract][Full Text] [Related]
9. High-performance silver nanoparticles coupled with monolayer hydrated tungsten oxide nanosheets: The structural effects in photocatalytic oxidation of cyclohexane. Xiao Y; Liu J; Mai J; Pan C; Cai X; Fang Y J Colloid Interface Sci; 2018 Apr; 516():172-181. PubMed ID: 29408103 [TBL] [Abstract][Full Text] [Related]
10. Fabrication of ion doped WO3 photocatalysts through bulk and surface doping. Wang X; Pang L; Hu X; Han N J Environ Sci (China); 2015 Sep; 35():76-82. PubMed ID: 26354695 [TBL] [Abstract][Full Text] [Related]
11. Improved WO3 photocatalytic efficiency using ZrO2 and Ru for the degradation of carbofuran and ampicillin. Gar Alalm M; Ookawara S; Fukushi D; Sato A; Tawfik A J Hazard Mater; 2016 Jan; 302():225-231. PubMed ID: 26476309 [TBL] [Abstract][Full Text] [Related]
12. Solar light active silver/iron oxide/zinc oxide heterostructure for photodegradation of ciprofloxacin, transformation products and antibacterial activity. Kaur A; Anderson WA; Tanvir S; Kansal SK J Colloid Interface Sci; 2019 Dec; 557():236-253. PubMed ID: 31521973 [TBL] [Abstract][Full Text] [Related]
13. A review of tungsten trioxide (WO Yuju S; Xiujuan T; Dongsheng S; Zhiruo Z; Meizhen W Ecotoxicol Environ Saf; 2023 Jul; 259():114988. PubMed ID: 37182300 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of Cu Lin H; Li T; Janani BJ; Fakhri A J Photochem Photobiol B; 2022 Jan; 226():112354. PubMed ID: 34814013 [TBL] [Abstract][Full Text] [Related]
15. Photocatalytic hydrogen production of the CdS/TiO2-WO3 ternary hybrid under visible light irradiation. Chen YL; Lo SL; Chang HL; Yeh HM; Sun L; Oiu C Water Sci Technol; 2016; 73(7):1667-72. PubMed ID: 27054739 [TBL] [Abstract][Full Text] [Related]
16. Graphene oxide-CdS composite with high photocatalytic degradation and disinfection activities under visible light irradiation. Gao P; Liu J; Sun DD; Ng W J Hazard Mater; 2013 Apr; 250-251():412-20. PubMed ID: 23500421 [TBL] [Abstract][Full Text] [Related]
17. Efficient water disinfection with Ag Li Y; Li Y; Ma S; Wang P; Hou Q; Han J; Zhan S J Hazard Mater; 2017 Sep; 338():33-46. PubMed ID: 28531657 [TBL] [Abstract][Full Text] [Related]
18. Removal of acetylsalicylate and methyl-theobromine from aqueous environment using nano-photocatalyst WO Tahir MB; Sagir M; Shahzad K J Hazard Mater; 2019 Feb; 363():205-213. PubMed ID: 30308359 [TBL] [Abstract][Full Text] [Related]
19. Highly efficient and stable Ag-AgBr/TiO2 composites for destruction of Escherichia coli under visible light irradiation. Wang X; Lim TT Water Res; 2013 Aug; 47(12):4148-58. PubMed ID: 23562562 [TBL] [Abstract][Full Text] [Related]
20. WO3 modified titanate network film: highly efficient photo-mineralization of 2-propanol under visible light irradiation. Li Q; Kako T; Ye J Chem Commun (Camb); 2010 Aug; 46(29):5352-4. PubMed ID: 20559586 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]