These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 27450681)

  • 1. Encapsulation of multiple cargo proteins within recombinant Eut nanocompartments.
    Quin MB; Perdue SA; Hsu SY; Schmidt-Dannert C
    Appl Microbiol Biotechnol; 2016 Nov; 100(21):9187-9200. PubMed ID: 27450681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering formation of multiple recombinant Eut protein nanocompartments in E. coli.
    Held M; Kolb A; Perdue S; Hsu SY; Bloch SE; Quin MB; Schmidt-Dannert C
    Sci Rep; 2016 Apr; 6():24359. PubMed ID: 27063436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrative
    Jallet D; Soldan V; Shayan R; Stella A; Ismail N; Zenati R; Cahoreau E; Burlet-Schiltz O; Balor S; Millard P; Heux S
    mSystems; 2024 Aug; 9(8):e0075024. PubMed ID: 39023255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineered protein nano-compartments for targeted enzyme localization.
    Choudhary S; Quin MB; Sanders MA; Johnson ET; Schmidt-Dannert C
    PLoS One; 2012; 7(3):e33342. PubMed ID: 22428024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Salmonella enterica, Ethanolamine Utilization Is Repressed by 1,2-Propanediol To Prevent Detrimental Mixing of Components of Two Different Bacterial Microcompartments.
    Sturms R; Streauslin NA; Cheng S; Bobik TA
    J Bacteriol; 2015 Jul; 197(14):2412-21. PubMed ID: 25962913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization of proteins to the 1,2-propanediol utilization microcompartment by non-native signal sequences is mediated by a common hydrophobic motif.
    Jakobson CM; Kim EY; Slininger MF; Chien A; Tullman-Ercek D
    J Biol Chem; 2015 Oct; 290(40):24519-33. PubMed ID: 26283792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and mechanisms of a protein-based organelle in Escherichia coli.
    Tanaka S; Sawaya MR; Yeates TO
    Science; 2010 Jan; 327(5961):81-4. PubMed ID: 20044574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous surface display and cargo loading of encapsulin nanocompartments and their use for rational vaccine design.
    Lagoutte P; Mignon C; Stadthagen G; Potisopon S; Donnat S; Mast J; Lugari A; Werle B
    Vaccine; 2018 Jun; 36(25):3622-3628. PubMed ID: 29759379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An allosteric model for control of pore opening by substrate binding in the EutL microcompartment shell protein.
    Thompson MC; Cascio D; Leibly DJ; Yeates TO
    Protein Sci; 2015 Jun; 24(6):956-75. PubMed ID: 25752492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzyme-cargo encapsulation peptides bind between tessellating tiles of the bacterial microcompartment shell.
    Gu S; Bradley-Clarke J; Rose RS; Warren MJ; Pickersgill RW
    J Biol Chem; 2024 Jun; 300(6):107357. PubMed ID: 38735476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of metabolosome encapsulation peptides on enzyme activity, coaggregation, incorporation, and bacterial microcompartment formation.
    Juodeikis R; Lee MJ; Mayer M; Mantell J; Brown IR; Verkade P; Woolfson DN; Prentice MB; Frank S; Warren MJ
    Microbiologyopen; 2020 May; 9(5):e1010. PubMed ID: 32053746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for Improved Encapsulated Pathway Behavior in a Bacterial Microcompartment through Shell Protein Engineering.
    Slininger Lee MF; Jakobson CM; Tullman-Ercek D
    ACS Synth Biol; 2017 Oct; 6(10):1880-1891. PubMed ID: 28585808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cargo encapsulation in bacterial microcompartments: Methods and analysis.
    Nichols TM; Kennedy NW; Tullman-Ercek D
    Methods Enzymol; 2019; 617():155-186. PubMed ID: 30784401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assembly of robust bacterial microcompartment shells using building blocks from an organelle of unknown function.
    Lassila JK; Bernstein SL; Kinney JN; Axen SD; Kerfeld CA
    J Mol Biol; 2014 May; 426(11):2217-28. PubMed ID: 24631000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A designed bacterial microcompartment shell with tunable composition and precision cargo loading.
    Ferlez B; Sutter M; Kerfeld CA
    Metab Eng; 2019 Jul; 54():286-291. PubMed ID: 31075444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Re-directing bacterial microcompartment systems to enhance recombinant expression of lysis protein E from bacteriophage ϕX174 in Escherichia coli.
    Yung MC; Bourguet FA; Carpenter TS; Coleman MA
    Microb Cell Fact; 2017 Apr; 16(1):71. PubMed ID: 28446197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystallographic insights into the pore structures and mechanisms of the EutL and EutM shell proteins of the ethanolamine-utilizing microcompartment of Escherichia coli.
    Takenoya M; Nikolakakis K; Sagermann M
    J Bacteriol; 2010 Nov; 192(22):6056-63. PubMed ID: 20851901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial microcompartment assembly: The key role of encapsulation peptides.
    Aussignargues C; Paasch BC; Gonzalez-Esquer R; Erbilgin O; Kerfeld CA
    Commun Integr Biol; 2015; 8(3):e1039755. PubMed ID: 26478774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Encapsulins: molecular biology of the shell.
    Nichols RJ; Cassidy-Amstutz C; Chaijarasphong T; Savage DF
    Crit Rev Biochem Mol Biol; 2017 Oct; 52(5):583-594. PubMed ID: 28635326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and heterogeneity of a highly cargo-loaded encapsulin shell.
    Kwon S; Andreas MP; Giessen TW
    bioRxiv; 2023 Jul; ():. PubMed ID: 37546724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.