BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

479 related articles for article (PubMed ID: 27451124)

  • 1. H3K27 Methylation: A Focal Point of Epigenetic Deregulation in Cancer.
    Nichol JN; Dupéré-Richer D; Ezponda T; Licht JD; Miller WH
    Adv Cancer Res; 2016; 131():59-95. PubMed ID: 27451124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular pathways: deregulation of histone h3 lysine 27 methylation in cancer-different paths, same destination.
    Ezponda T; Licht JD
    Clin Cancer Res; 2014 Oct; 20(19):5001-8. PubMed ID: 24987060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PRC2-independent chromatin compaction and transcriptional repression in cancer.
    Vallot C; Hérault A; Boyle S; Bickmore WA; Radvanyi F
    Oncogene; 2015 Feb; 34(6):741-51. PubMed ID: 24469045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. H3K27 methylation: a promiscuous repressive chromatin mark.
    Wiles ET; Selker EU
    Curr Opin Genet Dev; 2017 Apr; 43():31-37. PubMed ID: 27940208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Context-specific regulation of cancer epigenomes by histone and transcription factor methylation.
    Sarris M; Nikolaou K; Talianidis I
    Oncogene; 2014 Mar; 33(10):1207-17. PubMed ID: 23503463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. H3K9me-enhanced DNA hypermethylation of the p16INK4a gene: an epigenetic signature for spontaneous transformation of rat mesenchymal stem cells.
    Zheng Y; He L; Wan Y; Song J
    Stem Cells Dev; 2013 Jan; 22(2):256-67. PubMed ID: 22873822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of Retinal Development via the Epigenetic Modification of Histone H3.
    Watanabe S; Murakami A
    Adv Exp Med Biol; 2016; 854():635-41. PubMed ID: 26427469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gain-of-function mutation of chromatin regulators as a tumorigenic mechanism and an opportunity for therapeutic intervention.
    Shen C; Vakoc CR
    Curr Opin Oncol; 2015 Jan; 27(1):57-63. PubMed ID: 25402979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rebelled epigenome: histone H3S10 phosphorylation and H3S10 kinases in cancer biology and therapy.
    Komar D; Juszczynski P
    Clin Epigenetics; 2020 Oct; 12(1):147. PubMed ID: 33054831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The see-saw of differentiation: tipping the chromatin balance.
    Muegge K; Xi S; Geiman T
    Mol Interv; 2008 Feb; 8(1):15-8, 2. PubMed ID: 18332479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [A primer for epigenetics of hematological malignancies].
    Nakajima H
    Rinsho Ketsueki; 2016; 57(10):1835-1844. PubMed ID: 27725578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epigenetic mechanism of survivin dysregulation in human cancer.
    Lyu H; Huang J; He Z; Liu B
    Sci China Life Sci; 2018 Jul; 61(7):808-814. PubMed ID: 29318497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential remodeling of mono- and trimethylated H3K27 during porcine embryo development.
    Park KE; Magnani L; Cabot RA
    Mol Reprod Dev; 2009 Nov; 76(11):1033-42. PubMed ID: 19536841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. JMJD3 as an epigenetic regulator in development and disease.
    Burchfield JS; Li Q; Wang HY; Wang RF
    Int J Biochem Cell Biol; 2015 Oct; 67():148-57. PubMed ID: 26193001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epigenetic regulation of cancer biology and anti-tumor immunity by EZH2.
    Christofides A; Karantanos T; Bardhan K; Boussiotis VA
    Oncotarget; 2016 Dec; 7(51):85624-85640. PubMed ID: 27793053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compendium of aberrant DNA methylation and histone modifications in cancer.
    Hattori N; Ushijima T
    Biochem Biophys Res Commun; 2014 Dec; 455(1-2):3-9. PubMed ID: 25194808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The growing role of epigenetics in childhood cancers.
    Panditharatna E; Filbin MG
    Curr Opin Pediatr; 2020 Feb; 32(1):67-75. PubMed ID: 31895160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. H3K27M in Gliomas Causes a One-Step Decrease in H3K27 Methylation and Reduced Spreading within the Constraints of H3K36 Methylation.
    Harutyunyan AS; Chen H; Lu T; Horth C; Nikbakht H; Krug B; Russo C; Bareke E; Marchione DM; Coradin M; Garcia BA; Jabado N; Majewski J
    Cell Rep; 2020 Nov; 33(7):108390. PubMed ID: 33207202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epigenetic tools (The Writers, The Readers and The Erasers) and their implications in cancer therapy.
    Biswas S; Rao CM
    Eur J Pharmacol; 2018 Oct; 837():8-24. PubMed ID: 30125562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA methylation and histone modifications in patients with cancer: potential prognostic and therapeutic targets.
    Herranz M; Esteller M
    Methods Mol Biol; 2007; 361():25-62. PubMed ID: 17172706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.