These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 27451789)
1. Preparation of Graphene Oxide and Its Mechanism in Promoting Tomato Roots Growth. Jiao J; Cheng F; Zhang X; Xie L; Li Z; Yuan C; Xu B; Zhang L J Nanosci Nanotechnol; 2016 Apr; 16(4):4216-23. PubMed ID: 27451789 [TBL] [Abstract][Full Text] [Related]
2. Graphene oxide modulates root growth of Brassica napus L. and regulates ABA and IAA concentration. Cheng F; Liu YF; Lu GY; Zhang XK; Xie LL; Yuan CF; Xu BB J Plant Physiol; 2016 Apr; 193():57-63. PubMed ID: 26945480 [TBL] [Abstract][Full Text] [Related]
3. Impact of overexpression of 9-cis-epoxycarotenoid dioxygenase on growth and gene expression under salinity stress. Martínez-Andújar C; Martínez-Pérez A; Ferrández-Ayela A; Albacete A; Martínez-Melgarejo PA; Dodd IC; Thompson AJ; Pérez-Pérez JM; Pérez-Alfocea F Plant Sci; 2020 Jun; 295():110268. PubMed ID: 32534608 [TBL] [Abstract][Full Text] [Related]
4. Regulation and manipulation of ABA biosynthesis in roots. Thompson AJ; Mulholland BJ; Jackson AC; McKee JM; Hilton HW; Symonds RC; Sonneveld T; Burbidge A; Stevenson P; Taylor IB Plant Cell Environ; 2007 Jan; 30(1):67-78. PubMed ID: 17177877 [TBL] [Abstract][Full Text] [Related]
5. Graphene oxide and indole-3-acetic acid cotreatment regulates the root growth of Brassica napus L. via multiple phytohormone pathways. Xie L; Chen F; Du H; Zhang X; Wang X; Yao G; Xu B BMC Plant Biol; 2020 Mar; 20(1):101. PubMed ID: 32138661 [TBL] [Abstract][Full Text] [Related]
6. Graphene oxide and ABA cotreatment regulates root growth of Brassica napus L. by regulating IAA/ABA. Xie LL; Chen F; Zou XL; Shen SS; Wang XG; Yao GX; Xu BB J Plant Physiol; 2019 Sep; 240():153007. PubMed ID: 31310905 [TBL] [Abstract][Full Text] [Related]
7. Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid. Thompson AJ; Jackson AC; Symonds RC; Mulholland BJ; Dadswell AR; Blake PS; Burbidge A; Taylor IB Plant J; 2000 Aug; 23(3):363-74. PubMed ID: 10929129 [TBL] [Abstract][Full Text] [Related]
8. Abscisic acid biosynthesis in tomato: regulation of zeaxanthin epoxidase and 9-cis-epoxycarotenoid dioxygenase mRNAs by light/dark cycles, water stress and abscisic acid. Thompson AJ; Jackson AC; Parker RA; Morpeth DR; Burbidge A; Taylor IB Plant Mol Biol; 2000 Apr; 42(6):833-45. PubMed ID: 10890531 [TBL] [Abstract][Full Text] [Related]
9. Plant growth-promoting rhizobacteria Pseudomonas aeruginosa HG28-5 improves salt tolerance by regulating Na Dong H; Wang Y; Di Y; Qiu Y; Ji Z; Zhou T; Shen S; Du N; Zhang T; Dong X; Guo Z; Piao F; Li Y Microbiol Res; 2024 Jun; 283():127707. PubMed ID: 38582011 [TBL] [Abstract][Full Text] [Related]
10. Over-expression of LeNCED1 in tomato (Solanum lycopersicum L.) with the rbcS3C promoter allows recovery of lines that accumulate very high levels of abscisic acid and exhibit severe phenotypes. Tung SA; Smeeton R; White CA; Black CR; Taylor IB; Hilton HW; Thompson AJ Plant Cell Environ; 2008 Jul; 31(7):968-81. PubMed ID: 18373621 [TBL] [Abstract][Full Text] [Related]
11. Abscisic acid levels in tomato ovaries are regulated by LeNCED1 and SlCYP707A1. Nitsch LM; Oplaat C; Feron R; Ma Q; Wolters-Arts M; Hedden P; Mariani C; Vriezen WH Planta; 2009 May; 229(6):1335-46. PubMed ID: 19322584 [TBL] [Abstract][Full Text] [Related]
12. Indole-3-acetic acid and auxin herbicides up-regulate 9-cis-epoxycarotenoid dioxygenase gene expression and abscisic acid accumulation in cleavers (Galium aparine): interaction with ethylene. Kraft M; Kuglitsch R; Kwiatkowski J; Frank M; Grossmann K J Exp Bot; 2007; 58(6):1497-503. PubMed ID: 17317672 [TBL] [Abstract][Full Text] [Related]
13. Suppression of 9-cis-epoxycarotenoid dioxygenase, which encodes a key enzyme in abscisic acid biosynthesis, alters fruit texture in transgenic tomato. Sun L; Sun Y; Zhang M; Wang L; Ren J; Cui M; Wang Y; Ji K; Li P; Li Q; Chen P; Dai S; Duan C; Wu Y; Leng P Plant Physiol; 2012 Jan; 158(1):283-98. PubMed ID: 22108525 [TBL] [Abstract][Full Text] [Related]
14. Basic leucine zipper transcription factor SlbZIP1 mediates salt and drought stress tolerance in tomato. Zhu M; Meng X; Cai J; Li G; Dong T; Li Z BMC Plant Biol; 2018 May; 18(1):83. PubMed ID: 29739325 [TBL] [Abstract][Full Text] [Related]
15. Overexpression of an ABA biosynthesis gene using a stress-inducible promoter enhances drought resistance in petunia. Estrada-Melo AC; Chao ; Reid MS; Jiang CZ Hortic Res; 2015; 2():15013. PubMed ID: 26504568 [TBL] [Abstract][Full Text] [Related]
16. Abscisic acid root and leaf concentration in relation to biomass partitioning in salinized tomato plants. Lovelli S; Scopa A; Perniola M; Di Tommaso T; Sofo A J Plant Physiol; 2012 Feb; 169(3):226-33. PubMed ID: 22070973 [TBL] [Abstract][Full Text] [Related]
17. Overexpression of tomato SlbHLH22 transcription factor gene enhances fruit sensitivity to exogenous phytohormones and shortens fruit shelf-life. Waseem M; Li Z J Biotechnol; 2019 Jun; 299():50-56. PubMed ID: 31054298 [TBL] [Abstract][Full Text] [Related]
18. Hardening with salicylic acid induces concentration-dependent changes in abscisic acid biosynthesis of tomato under salt stress. Horváth E; Csiszár J; Gallé Á; Poór P; Szepesi Á; Tari I J Plant Physiol; 2015 Jul; 183():54-63. PubMed ID: 26086888 [TBL] [Abstract][Full Text] [Related]
19. Fruit-specific RNAi-mediated suppression of SlNCED1 increases both lycopene and β-carotene contents in tomato fruit. Sun L; Yuan B; Zhang M; Wang L; Cui M; Wang Q; Leng P J Exp Bot; 2012 May; 63(8):3097-108. PubMed ID: 22345638 [TBL] [Abstract][Full Text] [Related]
20. The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit. Zhang M; Yuan B; Leng P J Exp Bot; 2009; 60(6):1579-88. PubMed ID: 19246595 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]