These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 27452074)
1. Gold Nanoplate-Based 3D Hierarchical Microparticles: A Single Particle with High Surface-Enhanced Raman Scattering Enhancement. Ma Y; Yung LY Langmuir; 2016 Aug; 32(31):7854-9. PubMed ID: 27452074 [TBL] [Abstract][Full Text] [Related]
2. Formation and Self-assembly of Gold Nanoplates through an Interfacial Reaction for Surface-Enhanced Raman Scattering. Ma Y; Yung LY ACS Appl Mater Interfaces; 2016 Jun; 8(24):15567-73. PubMed ID: 27276116 [TBL] [Abstract][Full Text] [Related]
3. π-π stacking-directed self-assembly of nanoplatelets into diversified three-dimensional superparticles for high surface-enhanced Raman scattering. Li N; Zhang M; Zha Y; Cao Y; Ma Y J Colloid Interface Sci; 2020 Sep; 575():54-60. PubMed ID: 32361046 [TBL] [Abstract][Full Text] [Related]
4. Holey Au-Ag alloy nanoplates with built-in hotspots for surface-enhanced Raman scattering. Wei X; Fan Q; Liu H; Bai Y; Zhang L; Zheng H; Yin Y; Gao C Nanoscale; 2016 Aug; 8(34):15689-95. PubMed ID: 27524663 [TBL] [Abstract][Full Text] [Related]
5. Au nanoplates as robust, recyclable SERS substrates for ultrasensitive chemical sensing. Lin WH; Lu YH; Hsu YJ J Colloid Interface Sci; 2014 Mar; 418():87-94. PubMed ID: 24461822 [TBL] [Abstract][Full Text] [Related]
6. Atomically Flat Au Nanoplate Platforms Enable Ultraspecific Attomolar Detection of Protein Biomarkers. Hwang A; Kim E; Moon J; Lee H; Lee M; Jeong J; Lim EK; Jung J; Kang T; Kim B ACS Appl Mater Interfaces; 2019 May; 11(21):18960-18967. PubMed ID: 31062578 [TBL] [Abstract][Full Text] [Related]
7. Rapid Seedless Synthesis of Gold Nanoplates with Microscaled Edge Length in a High Yield and Their Application in SERS. Chen S; Xu P; Li Y; Xue J; Han S; Ou W; Li L; Ni W Nanomicro Lett; 2016; 8(4):328-335. PubMed ID: 30460291 [TBL] [Abstract][Full Text] [Related]
8. Fabrication and Formation Mechanism of Ag Nanoplate-Decorated Nanofiber Mats and Their Application in SERS. Jia P; Chang J; Wang J; Zhang P; Cao B; Geng Y; Wang X; Pan K Chem Asian J; 2016 Jan; 11(1):86-92. PubMed ID: 26395245 [TBL] [Abstract][Full Text] [Related]
9. Three-Dimensional Au-Coated Electrosprayed Nanostructured BODIPY Films on Aluminum Foil as Surface-Enhanced Raman Scattering Platforms and Their Catalytic Applications. Yilmaz M; Erkartal M; Ozdemir M; Sen U; Usta H; Demirel G ACS Appl Mater Interfaces; 2017 May; 9(21):18199-18206. PubMed ID: 28480705 [TBL] [Abstract][Full Text] [Related]
10. Bimetallic gold-silver nanoplate array as a highly active SERS substrate for detection of streptavidin/biotin assemblies. Bi L; Dong J; Xie W; Lu W; Tong W; Tao L; Qian W Anal Chim Acta; 2013 Dec; 805():95-100. PubMed ID: 24296148 [TBL] [Abstract][Full Text] [Related]
11. Giant Vesicles with Anchored Tiny Gold Nanowires: Fabrication and Surface-Enhanced Raman Scattering. Jia Y; Zhang L; Song L; Dai L; Lu X; Huang Y; Zhang J; Guo Z; Chen T Langmuir; 2017 Nov; 33(46):13376-13383. PubMed ID: 29057659 [TBL] [Abstract][Full Text] [Related]
12. "Elastic" property of mesoporous silica shell: for dynamic surface enhanced Raman scattering ability monitoring of growing noble metal nanostructures via a simplified spatially confined growth method. Lin M; Wang Y; Sun X; Wang W; Chen L ACS Appl Mater Interfaces; 2015 Apr; 7(14):7516-25. PubMed ID: 25815901 [TBL] [Abstract][Full Text] [Related]
13. Fabrication of large-scale gold nanoplate films as highly active SERS substrates for label-free DNA detection. Bi L; Rao Y; Tao Q; Dong J; Su T; Liu F; Qian W Biosens Bioelectron; 2013 May; 43():193-9. PubMed ID: 23306075 [TBL] [Abstract][Full Text] [Related]
14. Electrochemically Created Highly Surface Roughened Ag Nanoplate Arrays for SERS Biosensing Applications. Yang S; Slotcavage D; Mai JD; Guo F; Li S; Zhao Y; Lei Y; Cameron CE; Huang TJ J Mater Chem C Mater; 2014 Oct; 2(39):8350-8356. PubMed ID: 25383191 [TBL] [Abstract][Full Text] [Related]
15. One-step sonoelectrochemical fabrication of gold nanoparticle/carbon nanosheet hybrids for efficient surface-enhanced Raman scattering. Zhang K; Yao S; Li G; Hu Y Nanoscale; 2015 Feb; 7(6):2659-66. PubMed ID: 25580806 [TBL] [Abstract][Full Text] [Related]
16. Highly narrow nanogap-containing Au@Au core-shell SERS nanoparticles: size-dependent Raman enhancement and applications in cancer cell imaging. Hu C; Shen J; Yan J; Zhong J; Qin W; Liu R; Aldalbahi A; Zuo X; Song S; Fan C; He D Nanoscale; 2016 Jan; 8(4):2090-6. PubMed ID: 26701141 [TBL] [Abstract][Full Text] [Related]
18. In situ identification of crystal facet-mediated chemical reactions on tetrahexahedral gold nanocrystals using surface-enhanced Raman spectroscopy. Lang X; You T; Yin P; Tan E; Zhang Y; Huang Y; Zhu H; Ren B; Guo L Phys Chem Chem Phys; 2013 Nov; 15(44):19337-42. PubMed ID: 24121935 [TBL] [Abstract][Full Text] [Related]
19. High surface-enhanced Raman scattering performance of individual gold nanoflowers and their application in live cell imaging. Li Q; Jiang Y; Han R; Zhong X; Liu S; Li ZY; Sha Y; Xu D Small; 2013 Mar; 9(6):927-32. PubMed ID: 23180641 [TBL] [Abstract][Full Text] [Related]
20. In vivo detection of gold-imidazole self-assembly complexes: NIR-SERS signal reporters. Souza GR; Levin CS; Hajitou A; Pasqualini R; Arap W; Miller JH Anal Chem; 2006 Sep; 78(17):6232-7. PubMed ID: 16944906 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]