BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 27452169)

  • 1. Production of Enzymes from Marine Actinobacteria.
    Zhao XQ; Xu XN; Chen LY
    Adv Food Nutr Res; 2016; 78():137-51. PubMed ID: 27452169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of Enzymes From Agricultural Wastes and Their Potential Industrial Applications.
    Bharathiraja S; Suriya J; Krishnan M; Manivasagan P; Kim SK
    Adv Food Nutr Res; 2017; 80():125-148. PubMed ID: 28215322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production, purification, characterization and over-expression of xylanases from actinomycetes.
    Thomas L; Joseph A; Arumugam M; Pandey A
    Indian J Exp Biol; 2013 Nov; 51(11):875-84. PubMed ID: 24416921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Marine Enzymes: Production and Applications for Human Health.
    Rao TE; Imchen M; Kumavath R
    Adv Food Nutr Res; 2017; 80():149-163. PubMed ID: 28215323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An isolated Amycolatopsis sp. GDS for cellulase and xylanase production using agricultural waste biomass.
    Kshirsagar SD; Saratale GD; Saratale RG; Govindwar SP; Oh MK
    J Appl Microbiol; 2016 Jan; 120(1):112-25. PubMed ID: 26507788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomedical Applications of Enzymes From Marine Actinobacteria.
    Kamala K; Sivaperumal P
    Adv Food Nutr Res; 2017; 80():107-123. PubMed ID: 28215321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Existence in cellulose shelters: industrial and pharmaceutical leads of symbiotic actinobacteria from ascidian Phallusia nigra, Andaman Islands.
    Meena B; Anburajan L; Nitharsan K; Vinithkumar NV; Dharani G
    World J Microbiol Biotechnol; 2021 Jun; 37(7):120. PubMed ID: 34132920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Marine actinobacteria associated with marine organisms and their potentials in producing pharmaceutical natural products.
    Valliappan K; Sun W; Li Z
    Appl Microbiol Biotechnol; 2014 Sep; 98(17):7365-77. PubMed ID: 25064352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utilization of Chitinaceous Wastes for the Production of Chitinase.
    Das S; Roy D; Sen R
    Adv Food Nutr Res; 2016; 78():27-46. PubMed ID: 27452164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymes From Rare Actinobacterial Strains.
    Suriya J; Bharathiraja S; Manivasagan P; Kim SK
    Adv Food Nutr Res; 2016; 79():67-98. PubMed ID: 27770864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comprehensive review on strategic study of cellulase producing marine actinobacteria for biofuel applications.
    John J A; Samuel MS; Govarthanan M; Selvarajan E
    Environ Res; 2022 Nov; 214(Pt 3):114018. PubMed ID: 35961544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of cellulose-utilizing Escherichia coli based on a secretable cellulase.
    Gao D; Luan Y; Wang Q; Liang Q; Qi Q
    Microb Cell Fact; 2015 Oct; 14():159. PubMed ID: 26452465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extremozymes from Marine Actinobacteria.
    Suriya J; Bharathiraja S; Krishnan M; Manivasagan P; Kim SK
    Adv Food Nutr Res; 2016; 79():43-66. PubMed ID: 27770863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced hydrolysis of lignocellulosic biomass: Bi-functional enzyme complexes expressed in Pichia pastoris improve bioethanol production from Miscanthus sinensis.
    Shin SK; Hyeon JE; Kim YI; Kang DH; Kim SW; Park C; Han SO
    Biotechnol J; 2015 Dec; 10(12):1912-9. PubMed ID: 26479167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzyme Bioprospection of Marine-Derived Actinobacteria from the Chilean Coast and New Insight in the Mechanism of Keratin Degradation in
    González V; Vargas-Straube MJ; Beys-da-Silva WO; Santi L; Valencia P; Beltrametti F; Cámara B
    Mar Drugs; 2020 Oct; 18(11):. PubMed ID: 33126528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cold-active xylanase produced by fungi associated with Antarctic marine sponges.
    Del-Cid A; Ubilla P; Ravanal MC; Medina E; Vaca I; Levicán G; Eyzaguirre J; Chávez R
    Appl Biochem Biotechnol; 2014 Jan; 172(1):524-32. PubMed ID: 24096527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Marine microbial L-asparaginase: Biochemistry, molecular approaches and applications in tumor therapy and in food industry.
    Izadpanah Qeshmi F; Homaei A; Fernandes P; Javadpour S
    Microbiol Res; 2018 Mar; 208():99-112. PubMed ID: 29551216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological properties and enzymatic activity of an Arthrobacter capable of lysing Fusarium sp.
    Szajer C; Koths JS
    Acta Microbiol Pol B; 1973; 5(2):81-6. PubMed ID: 4723721
    [No Abstract]   [Full Text] [Related]  

  • 19. Synergistic effect and application of xylanases as accessory enzymes to enhance the hydrolysis of pretreated bagasse.
    Gonçalves GA; Takasugi Y; Jia L; Mori Y; Noda S; Tanaka T; Ichinose H; Kamiya N
    Enzyme Microb Technol; 2015 May; 72():16-24. PubMed ID: 25837503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial xylanases: engineering, production and industrial applications.
    Juturu V; Wu JC
    Biotechnol Adv; 2012; 30(6):1219-27. PubMed ID: 22138412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.