These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 27452209)

  • 1. Self-assembly of core-polyethylene glycol-lipid shell (CPLS) nanoparticles and their potential as drug delivery vehicles.
    Shen Z; Loe DT; Awino JK; Kröger M; Rouge JL; Li Y
    Nanoscale; 2016 Aug; 8(31):14821-35. PubMed ID: 27452209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-assembled core-polyethylene glycol-lipid shell nanoparticles demonstrate high stability in shear flow.
    Shen Z; Ye H; Kröger M; Li Y
    Phys Chem Chem Phys; 2017 May; 19(20):13294-13306. PubMed ID: 28492653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aggregation of polyethylene glycol polymers suppresses receptor-mediated endocytosis of PEGylated liposomes.
    Shen Z; Ye H; Kröger M; Li Y
    Nanoscale; 2018 Mar; 10(9):4545-4560. PubMed ID: 29461551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review.
    Hadinoto K; Sundaresan A; Cheow WS
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt A):427-43. PubMed ID: 23872180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymer stiffness governs template mediated self-assembly of liposome-like nanoparticles: simulation, theory and experiment.
    Shen Z; Loe DT; Fisher A; Kröger M; Rouge JL; Li Y
    Nanoscale; 2019 Nov; 11(42):20179-20193. PubMed ID: 31617539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and characterization of PEGylated bolaamphiphiles with enhanced retention in liposomes.
    Zhang Y; Mintzer E; Uhrich KE
    J Colloid Interface Sci; 2016 Nov; 482():19-26. PubMed ID: 27485501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescent-labeled poly(ethylene glycol) lipid conjugates with distal cationic headgroups.
    Chen T; Wong KF; Fenske DB; Palmer LR; Cullis PR
    Bioconjug Chem; 2000; 11(3):433-7. PubMed ID: 10821661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of temperature and PEG grafting density on the translocation of PEGylated nanoparticles across asymmetric lipid membrane.
    Zhang Z; Lin X; Gu N
    Colloids Surf B Biointerfaces; 2017 Dec; 160():92-100. PubMed ID: 28918189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interparticle dispersion, membrane curvature, and penetration induced by single-walled carbon nanotubes wrapped with lipids and PEGylated lipids.
    Lee H
    J Phys Chem B; 2013 Feb; 117(5):1337-44. PubMed ID: 23214434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of Plasma Proteins onto PEGylated Lipid Bilayers: The Effect of PEG Size and Grafting Density.
    Lee H; Larson RG
    Biomacromolecules; 2016 May; 17(5):1757-65. PubMed ID: 27046506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoparticles evading the reticuloendothelial system: role of the supported bilayer.
    Li SD; Huang L
    Biochim Biophys Acta; 2009 Oct; 1788(10):2259-66. PubMed ID: 19595666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery.
    Chan JM; Zhang L; Yuet KP; Liao G; Rhee JW; Langer R; Farokhzad OC
    Biomaterials; 2009 Mar; 30(8):1627-34. PubMed ID: 19111339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size and structure of spontaneously forming liposomes in lipid/PEG-lipid mixtures.
    Rovira-Bru M; Thompson DH; Szleifer I
    Biophys J; 2002 Nov; 83(5):2419-39. PubMed ID: 12414678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distal cationic poly(ethylene glycol) lipid conjugates in large unilamellar vesicles prepared by extrusion enhance liposomal cellular uptake.
    Chen T; Palmer LR; Fenske DB; Lam AM; Wong KF; Cullis PR
    J Liposome Res; 2004; 14(3-4):155-73. PubMed ID: 15676124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the rod-to-tube transformation of self-assembled ascorbyl dipalmitate lipid nanoparticles stabilized with PEGylated lipids.
    Chen Z; Higashi K; Shigehisa Y; Ueda K; Yamamoto K; Moribe K
    Nanoscale; 2023 Feb; 15(6):2602-2613. PubMed ID: 36484313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Liposomes tethered to omega-functional PEG brushes and induced formation of PEG brush supported planar lipid bilayers.
    Ye Q; Konradi R; Textor M; Reimhult E
    Langmuir; 2009 Dec; 25(23):13534-9. PubMed ID: 19736981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subtle changes in surface-tethered groups on PEGylated DNA nanoparticles significantly influence gene transfection and cellular uptake.
    Ke X; Wei Z; Wang Y; Shen S; Ren Y; Williford JM; Luijten E; Mao HQ
    Nanomedicine; 2019 Jul; 19():126-135. PubMed ID: 31048082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrophobic Domain Structure of Linear-Dendritic Poly(ethylene glycol) Lipids Affects RNA Delivery of Lipid Nanoparticles.
    Zhou K; Johnson LT; Xiong H; Barrios S; Minnig JT; Yan Y; Abram B; Yu X; Siegwart DJ
    Mol Pharm; 2020 May; 17(5):1575-1585. PubMed ID: 32267707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly hydrated deformable polyethylene glycol-tethered lipid bilayers.
    Hertrich S; Stetter F; Rühm A; Hugel T; Nickel B
    Langmuir; 2014 Aug; 30(31):9442-7. PubMed ID: 25046694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular-Level "Observations" of the Behavior of Gold Nanoparticles in Aqueous Solution and Interacting with a Lipid Bilayer Membrane.
    Oroskar PA; Jameson CJ; Murad S
    Methods Mol Biol; 2019; 2000():303-359. PubMed ID: 31148024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.