These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 27452234)

  • 1. Algorithm for Designing Nanoscale Supramolecular Therapeutics with Increased Anticancer Efficacy.
    Kulkarni A; Pandey P; Rao P; Mahmoud A; Goldman A; Sabbisetti V; Parcha S; Natarajan SK; Chandrasekar V; Dinulescu D; Roy S; Sengupta S
    ACS Nano; 2016 Sep; 10(9):8154-68. PubMed ID: 27452234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining Immune Checkpoint Inhibitors and Kinase-Inhibiting Supramolecular Therapeutics for Enhanced Anticancer Efficacy.
    Kulkarni A; Natarajan SK; Chandrasekar V; Pandey PR; Sengupta S
    ACS Nano; 2016 Oct; 10(10):9227-9242. PubMed ID: 27656909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soft Supramolecular Nanoparticles by Noncovalent and Host-Guest Interactions.
    Stoffelen C; Huskens J
    Small; 2016 Jan; 12(1):96-119. PubMed ID: 26584451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational strategies for the automated design of RNA nanoscale structures from building blocks using NanoTiler.
    Bindewald E; Grunewald C; Boyle B; O'Connor M; Shapiro BA
    J Mol Graph Model; 2008 Oct; 27(3):299-308. PubMed ID: 18838281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physics and engineering of peptide supramolecular nanostructures.
    Handelman A; Beker P; Amdursky N; Rosenman G
    Phys Chem Chem Phys; 2012 May; 14(18):6391-408. PubMed ID: 22460950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using theory and computation to model nanoscale properties.
    Schatz GC
    Proc Natl Acad Sci U S A; 2007 Apr; 104(17):6885-92. PubMed ID: 17438274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale drug delivery for taxanes based on the mechanism of multidrug resistance of cancer.
    Wang S; Qiu J; Shi Z; Wang Y; Chen M
    Biotechnol Adv; 2015; 33(1):224-241. PubMed ID: 25447422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interfacially formed organized planar inorganic, polymeric and composite nanostructures.
    Khomutov GB
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):79-116. PubMed ID: 15571664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supramolecular Self-Assemblies with Nanoscale RGD Clusters Promote Cell Growth and Intracellular Drug Delivery.
    Xu F; Liu J; Tian J; Gao L; Cheng X; Pan Y; Sun Z; Li X
    ACS Appl Mater Interfaces; 2016 Nov; 8(44):29906-29914. PubMed ID: 27759366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rationally designed peptide nanosponges for cell-based cancer therapy.
    Wang H; Yapa AS; Kariyawasam NL; Shrestha TB; Kalubowilage M; Wendel SO; Yu J; Pyle M; Basel MT; Malalasekera AP; Toledo Y; Ortega R; Thapa PS; Huang H; Sun SX; Smith PE; Troyer DL; Bossmann SH
    Nanomedicine; 2017 Nov; 13(8):2555-2564. PubMed ID: 28754467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SIMONA 1.0: an efficient and versatile framework for stochastic simulations of molecular and nanoscale systems.
    Strunk T; Wolf M; Brieg M; Klenin K; Biewer A; Tristram F; Ernst M; Kleine PJ; Heilmann N; Kondov I; Wenzel W
    J Comput Chem; 2012 Dec; 33(32):2602-13. PubMed ID: 22886395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoparticles functionalized with supramolecular host-guest systems for nanomedicine and healthcare.
    Wu Z; Song N; Menz R; Pingali B; Yang YW; Zheng Y
    Nanomedicine (Lond); 2015 May; 10(9):1493-514. PubMed ID: 25996121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supramolecular nanoscale drug-delivery system with ordered structure.
    Jin X; Zhu L; Xue B; Zhu X; Yan D
    Natl Sci Rev; 2019 Nov; 6(6):1128-1137. PubMed ID: 34691991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying the Self-Assembly Behavior of Anisotropic Nanoparticles Using Liquid-Phase Transmission Electron Microscopy.
    Luo B; Smith JW; Ou Z; Chen Q
    Acc Chem Res; 2017 May; 50(5):1125-1133. PubMed ID: 28443654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale superstructures assembled by polymerase chain reaction (PCR): programmable construction, structural diversity, and emerging applications.
    Kuang H; Ma W; Xu L; Wang L; Xu C
    Acc Chem Res; 2013 Nov; 46(11):2341-54. PubMed ID: 23742672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Responsive nanostructures from aqueous assembly of rigid-flexible block molecules.
    Kim HJ; Kim T; Lee M
    Acc Chem Res; 2011 Jan; 44(1):72-82. PubMed ID: 21128602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanised nanoparticles for drug delivery.
    Cotí KK; Belowich ME; Liong M; Ambrogio MW; Lau YA; Khatib HA; Zink JI; Khashab NM; Stoddart JF
    Nanoscale; 2009 Oct; 1(1):16-39. PubMed ID: 20644858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emerging implications of nanotechnology on cancer diagnostics and therapeutics.
    Cuenca AG; Jiang H; Hochwald SN; Delano M; Cance WG; Grobmyer SR
    Cancer; 2006 Aug; 107(3):459-66. PubMed ID: 16795065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular photoswitches mediating the strain-driven disassembly of supramolecular tubules.
    Fredy JW; Méndez-Ardoy A; Kwangmettatam S; Bochicchio D; Matt B; Stuart MCA; Huskens J; Katsonis N; Pavan GM; Kudernac T
    Proc Natl Acad Sci U S A; 2017 Nov; 114(45):11850-11855. PubMed ID: 29078355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine.
    Al-Jamal WT; Kostarelos K
    Acc Chem Res; 2011 Oct; 44(10):1094-104. PubMed ID: 21812415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.