BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

399 related articles for article (PubMed ID: 27452877)

  • 1. Artificial neural networks to predict 3D spinal posture in reaching and lifting activities; Applications in biomechanical models.
    Gholipour A; Arjmand N
    J Biomech; 2016 Sep; 49(13):2946-2952. PubMed ID: 27452877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An artificial neural network for full-body posture prediction in dynamic lifting activities and effects of its prediction errors on model-estimated spinal loads.
    Hosseini N; Arjmand N
    J Biomech; 2024 Jan; 162():111896. PubMed ID: 38072705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relative performances of artificial neural network and regression mapping tools in evaluation of spinal loads and muscle forces during static lifting.
    Arjmand N; Ekrami O; Shirazi-Adl A; Plamondon A; Parnianpour M
    J Biomech; 2013 May; 46(8):1454-62. PubMed ID: 23541615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved artificial neural networks for 3D body posture and lumbosacral moment predictions during manual material handling activities.
    Mohseni M; Aghazadeh F; Arjmand N
    J Biomech; 2022 Jan; 131():110921. PubMed ID: 34968890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupled artificial neural networks to estimate 3D whole-body posture, lumbosacral moments, and spinal loads during load-handling activities.
    Aghazadeh F; Arjmand N; Nasrabadi AM
    J Biomech; 2020 Mar; 102():109332. PubMed ID: 31540822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of spine morphology on intervertebral disc loads and stresses in asymptomatic adults: implications for the ideal spine.
    Keller TS; Colloca CJ; Harrison DE; Harrison DD; Janik TJ
    Spine J; 2005; 5(3):297-309. PubMed ID: 15863086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regression models for predicting peak and continuous three-dimensional spinal loads during symmetric and asymmetric lifting tasks.
    Fathallah FA; Marras WS; Parnianpour M
    Hum Factors; 1999 Sep; 41(3):373-88. PubMed ID: 10665206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models.
    Arjmand N; Gagnon D; Plamondon A; Shirazi-Adl A; Larivière C
    Clin Biomech (Bristol, Avon); 2009 Aug; 24(7):533-41. PubMed ID: 19493597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative evaluation of six quantitative lifting tools to estimate spine loads during static activities.
    Rajaee MA; Arjmand N; Shirazi-Adl A; Plamondon A; Schmidt H
    Appl Ergon; 2015 May; 48():22-32. PubMed ID: 25683528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predictive equations to estimate spinal loads in symmetric lifting tasks.
    Arjmand N; Plamondon A; Shirazi-Adl A; Larivière C; Parnianpour M
    J Biomech; 2011 Jan; 44(1):84-91. PubMed ID: 20850750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of squat and stoop dynamic liftings: muscle forces and internal spinal loads.
    Bazrgari B; Shirazi-Adl A; Arjmand N
    Eur Spine J; 2007 May; 16(5):687-99. PubMed ID: 17103232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictive equations for lumbar spine loads in load-dependent asymmetric one- and two-handed lifting activities.
    Arjmand N; Plamondon A; Shirazi-Adl A; Parnianpour M; Larivière C
    Clin Biomech (Bristol, Avon); 2012 Jul; 27(6):537-44. PubMed ID: 22265249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wrapping of trunk thoracic extensor muscles influences muscle forces and spinal loads in lifting tasks.
    Arjmand N; Shirazi-Adl A; Bazrgari B
    Clin Biomech (Bristol, Avon); 2006 Aug; 21(7):668-75. PubMed ID: 16678948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subject-specific regression equations to estimate lower spinal loads during symmetric and asymmetric static lifting.
    Ghezelbash F; Shirazi-Adl A; El Ouaaid Z; Plamondon A; Arjmand N
    J Biomech; 2020 Mar; 102():109550. PubMed ID: 31932024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of different lifting analysis tools in estimating lower spinal loads - Evaluation of NIOSH criterion.
    Ghezelbash F; Shirazi-Adl A; Plamondon A; Arjmand N
    J Biomech; 2020 Nov; 112():110024. PubMed ID: 32961423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-task artificial neural networks and their extrapolation capabilities to predict full-body 3D human posture during one- and two-handed load-handling activities.
    Mohseni M; Zargarzadeh S; Arjmand N
    J Biomech; 2024 Jan; 162():111884. PubMed ID: 38043495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spinal loading during manual materials handling in a kneeling posture.
    Splittstoesser RE; Yang G; Knapik GG; Trippany DR; Hoyle JA; Lahoti P; Korkmaz SV; Sommerich CM; Lavender SA; Marras WS
    J Electromyogr Kinesiol; 2007 Feb; 17(1):25-34. PubMed ID: 16517181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The assessment of material handling strategies in dealing with sudden loading: the effects of load handling position on trunk biomechanics.
    Ning X; Zhou J; Dai B; Jaridi M
    Appl Ergon; 2014 Nov; 45(6):1399-405. PubMed ID: 24766903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of obesity on spinal loads during load-reaching activities: A subject- and kinematics-specific musculoskeletal modeling approach.
    Bahramian M; Arjmand N; El-Rich M; Parnianpour M
    J Biomech; 2023 Dec; 161():111770. PubMed ID: 37633816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of spinal internal loads and lumbar curvature under holding static load at different trunk and knee positions.
    Kahrizi S; Parnianpour M; Firoozabadi SM; Kasemnejad A; Karimi E
    Pak J Biol Sci; 2007 Apr; 10(7):1036-43. PubMed ID: 19070047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.