These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 2745288)

  • 1. Flutter in flow-limited collapsible tubes: a mechanism for generation of wheezes.
    Gavriely N; Shee TR; Cugell DW; Grotberg JB
    J Appl Physiol (1985); 1989 May; 66(5):2251-61. PubMed ID: 2745288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flutter in collapsible tubes: a theoretical model of wheezes.
    Grotberg JB; Gavriely N
    J Appl Physiol (1985); 1989 May; 66(5):2262-73. PubMed ID: 2745289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Forced expiratory wheezes are a manifestation of airway flow limitation.
    Gavriely N; Kelly KB; Grotberg JB; Loring SH
    J Appl Physiol (1985); 1987 Jun; 62(6):2398-403. PubMed ID: 3610933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement and theory of wheezing breath sounds.
    Gavriely N; Palti Y; Alroy G; Grotberg JB
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Aug; 57(2):481-92. PubMed ID: 6469819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feedback modulation of surrounding pressure determines the onset of negative effort dependence in a collapsible tube bench model of the pharyngeal airway.
    Lambeth C; Kolevski B; Amis T; Kairaitis K
    J Appl Physiol (1985); 2017 Nov; 123(5):1118-1125. PubMed ID: 28819002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unstable equilibrium behaviour in collapsible tubes.
    Bertram CD
    J Biomech; 1986; 19(1):61-9. PubMed ID: 2936743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow limitation and wheezes in a constant flow and volume lung preparation.
    Gavriely N; Grotberg JB
    J Appl Physiol (1985); 1988 Jan; 64(1):17-20. PubMed ID: 3356634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Critical pressures required for generation of forced expiratory wheezes.
    Gavriely N; Kelly KB; Grotberg JB; Loring SH
    J Appl Physiol (1985); 1989 Mar; 66(3):1136-42. PubMed ID: 2708238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Onset of airflow limitation in a collapsible tube model: impact of surrounding pressure, longitudinal strain, and wall folding geometry.
    Amatoury J; Kairaitis K; Wheatley JR; Bilston LE; Amis TC
    J Appl Physiol (1985); 2010 Nov; 109(5):1467-75. PubMed ID: 20829496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions of pulsatile upstream forcing with flow-induced oscillations of a collapsed tube: mode-locking.
    Bertram CD; Sheppeard MD
    Med Eng Phys; 2000 Jan; 22(1):29-37. PubMed ID: 10817946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of total respiratory impedance via the endotracheal tube; a model study.
    Michels A; Làndsér FJ; Cauberghs M; Van de Woestijne KP
    Bull Eur Physiopathol Respir; 1986; 22(6):615-20. PubMed ID: 3828553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lung sounds in bronchial asthma.
    Nagasaka Y
    Allergol Int; 2012 Sep; 61(3):353-63. PubMed ID: 22722817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of wall thickness, axial strain and end proximity on the pressure-area relation of collapsible tubes.
    Bertram CD
    J Biomech; 1987; 20(9):863-76. PubMed ID: 3680312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oscillations in a collapsed-tube analog of the brachial artery under a sphygmomanometer cuff.
    Bertram CD; Raymond CJ; Butcher KS
    J Biomech Eng; 1989 Aug; 111(3):185-91. PubMed ID: 2779182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pressure-induced wall thickness variations in multi-layered wall of a pollen tube and Fourier decomposition of growth oscillations.
    Pietruszka M; Haduch-Sendecka A
    Gen Physiol Biophys; 2015 Apr; 34(2):145-56. PubMed ID: 25675387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Peak frequency of tracheal forced expiratory wheezes during bronhodilatation test].
    Safronova MA; Pochekutova IA; Korenbaum VI
    Fiziol Cheloveka; 2014; 40(6):123-8. PubMed ID: 25711115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser-Doppler measurements of velocities just downstream of a collapsible tube during flow-induced oscillations.
    Bertram CD; Diaz de Tuesta G; Nugent AH
    J Biomech Eng; 2001 Oct; 123(5):493-9. PubMed ID: 11601735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. General tube law for collapsible thin and thick-wall tubes.
    Kozlovsky P; Zaretsky U; Jaffa AJ; Elad D
    J Biomech; 2014 Jul; 47(10):2378-84. PubMed ID: 24837222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oscillatory fluid flow in deformable tubes: Implications for pore-scale hydromechanics from comparing experimental observations with theoretical predictions.
    Kurzeja P; Steeb H; Strutz MA; Renner J
    J Acoust Soc Am; 2016 Dec; 140(6):4378. PubMed ID: 28040004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sound generation mechanisms in a collapsible tube.
    Laudato M; Zea E; Sundström E; Boij S; Mihaescu M
    J Acoust Soc Am; 2024 May; 155(5):3345-3356. PubMed ID: 38758053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.