BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

29 related articles for article (PubMed ID: 27452930)

  • 1. Copulation Activity, Sperm Production and Conidia Transfer in Aedes aegypti Males Contaminated by Metarhizium anisopliae: A Biological Control Prospect.
    Garza-Hernández JA; Reyes-Villanueva F; Russell TL; Braks MA; Garcia-Munguia AM; Rodríguez-Pérez MA
    PLoS Negl Trop Dis; 2015; 9(10):e0004144. PubMed ID: 26473490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metarhizium anisopliae blastospores are highly virulent to adult Aedes aegypti, an important arbovirus vector.
    de Paula AR; Silva LEI; Ribeiro A; da Silva GA; Silva CP; Butt TM; Samuels RI
    Parasit Vectors; 2021 Oct; 14(1):555. PubMed ID: 34711272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Native fungi from Amazon with potential for control of Aedes aegypti L. (Diptera: Culicidae).
    Mendonça GRQ; Peters LP; Lopes LM; Sousa AH; Carvalho CM
    Braz J Biol; 2023; 83():e274954. PubMed ID: 37909558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of destruxins from Metarhizium spp. fungi in artificial medium and in endophytically colonized cowpea plants.
    Golo PS; Gardner DR; Grilley MM; Takemoto JY; Krasnoff SB; Pires MS; Fernandes ÉK; Bittencourt VR; Roberts DW
    PLoS One; 2014; 9(8):e104946. PubMed ID: 25127450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pathogenicity of microsclerotia from Metarhizium robertsii against Aedes aegypti larvae and antimicrobial peptides expression by mosquitoes during fungal-host interaction.
    Paixão FRS; Falvo ML; Huarte-Bonnet C; Santana M; García JJ; Fernandes ÉKK; Pedrini N
    Acta Trop; 2024 Jan; 249():107061. PubMed ID: 37918505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Entomopathogenic fungi-based silver nanoparticles: a potential substitute of synthetic insecticides to counter behavioral and physiological immunity in Aedes aegypti mosquito (Diptera: Culicidae).
    Mehmood N; Hassan A; Zhong X; Zhu Y; Ouyang G; Raza T; Zia S; Chen X; Huang Q
    Environ Sci Pollut Res Int; 2024 May; 31(21):30793-30805. PubMed ID: 38613759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altered membrane rigidity via enhanced endogenous cholesterol synthesis drives cancer cell resistance to destruxins.
    Heilos D; Röhrl C; Pirker C; Englinger B; Baier D; Mohr T; Schwaiger M; Iqbal SM; van Schoonhoven S; Klavins K; Eberhart T; Windberger U; Taibon J; Sturm S; Stuppner H; Koellensperger G; Dornetshuber-Fleiss R; Jäger W; Lemmens-Gruber R; Berger W
    Oncotarget; 2018 May; 9(39):25661-25680. PubMed ID: 29876015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular docking of protease from Metarhizium anisopliae and their toxic effect against model insect Galleria mellonella.
    Keppanan R; Sivaperumal S; Chadra Kanta D; Akutse KS; Wang L
    Pestic Biochem Physiol; 2017 May; 138():8-14. PubMed ID: 28456309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infection of the Stable Fly,
    Baleba SBS; Agbessenou A; Getahun MN; Akutse KS; Subramanian S; Masiga D
    Front Fungal Biol; 2021; 2():637817. PubMed ID: 37744116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Model of Pathogenesis of
    Bitencourt ROB; Santos-Mallet JRD; Lowenberger C; Ventura A; Gôlo PS; Bittencourt VREP; Angelo IDC
    Insects; 2023 Mar; 14(4):. PubMed ID: 37103143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model Application of Entomopathogenic Fungi as Alternatives to Chemical Pesticides: Prospects, Challenges, and Insights for Next-Generation Sustainable Agriculture.
    Bamisile BS; Akutse KS; Siddiqui JA; Xu Y
    Front Plant Sci; 2021; 12():741804. PubMed ID: 34659310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization and Toxicity of Crude Toxins Produced by
    Wu J; Yang B; Xu J; Cuthbertson AGS; Ali S
    Toxins (Basel); 2021 Mar; 13(3):. PubMed ID: 33803611
    [No Abstract]   [Full Text] [Related]  

  • 13. Acetamiprid Affects Destruxins Production but Its Accumulation in
    Nowak M; Bernat P; Mrozińska J; Różalska S
    Toxins (Basel); 2020 Sep; 12(9):. PubMed ID: 32932866
    [No Abstract]   [Full Text] [Related]  

  • 14. Determination and characterization of destruxin production in Metarhizium anisopliae Tk6 and formulations for Aedes aegypti mosquitoes control at the field level.
    Ravindran K; Akutse KS; Sivaramakrishnan S; Wang L
    Toxicon; 2016 Sep; 120():89-96. PubMed ID: 27452930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigations on the destruxin production of the entomopathogenic fungus Metarhizium anisopliae.
    Wang C; Skrobek A; Butt TM
    J Invertebr Pathol; 2004 Mar; 85(3):168-74. PubMed ID: 15109899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Infection of adult Aedes aegypti and Ae. albopictus mosquitoes with the entomopathogenic fungus Metarhizium anisopliae.
    Scholte EJ; Takken W; Knols BG
    Acta Trop; 2007 Jun; 102(3):151-8. PubMed ID: 17544354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Destruxin production of Metarhizium anisopliae under carbon and nitrogen exhaustion.
    Wang H; Hutwimmer S; Strasser H; Burgstaller W
    J Basic Microbiol; 2009 Aug; 49(4):404-11. PubMed ID: 19322833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metarhizium brunneum Blastospore Pathogenesis in Aedes aegypti Larvae: Attack on Several Fronts Accelerates Mortality.
    Alkhaibari AM; Carolino AT; Yavasoglu SI; Maffeis T; Mattoso TC; Bull JC; Samuels RI; Butt TM
    PLoS Pathog; 2016 Jul; 12(7):e1005715. PubMed ID: 27389584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and applications of destruxins: a review.
    Liu BL; Tzeng YM
    Biotechnol Adv; 2012; 30(6):1242-54. PubMed ID: 22079799
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.