These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 27453285)

  • 1. Artificial neural network (ANN)-based prediction of depth filter loading capacity for filter sizing.
    Agarwal H; Rathore AS; Hadpe SR; Alva SJ
    Biotechnol Prog; 2016 Nov; 32(6):1436-1443. PubMed ID: 27453285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting the performance of multi-media filters using artificial neural networks.
    Hawari AH; Alnahhal W
    Water Sci Technol; 2016 Nov; 74(9):2225-2233. PubMed ID: 27842042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scale-up of Sterilizing-grade Membrane Filters from Discs to Pleated Cartridges: Effects of Operating Parameters and Solution Properties.
    Kumar A; Martin J; Kuriyel R
    PDA J Pharm Sci Technol; 2015; 69(1):74-87. PubMed ID: 25691716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental studies and neural network modeling of the removal of trichloroethylene vapor in a biofilter.
    Baskaran D; Rajamanickam R; Pakshirajan K
    J Environ Manage; 2019 Nov; 250():109385. PubMed ID: 31521920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust depth filter sizing for centrate clarification.
    Lutz H; Chefer K; Felo M; Cacace B; Hove S; Wang B; Blanchard M; Oulundsen G; Piper R; Zhao X
    Biotechnol Prog; 2015; 31(6):1542-50. PubMed ID: 26518411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling drug solubility in water-cosolvent mixtures using an artificial neural network.
    Jouyban A; Majidi MR; Jalilzadeh H; Asadpour-Zeynali K
    Farmaco; 2004 Jun; 59(6):505-12. PubMed ID: 15178314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new approach to dose estimation and in-phantom figure of merit measurement in BNCT by using artificial neural networks.
    Ahangari R; Afarideh H
    Australas Phys Eng Sci Med; 2011 Dec; 34(4):467-79. PubMed ID: 22042720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automation of Dead End Filtration: An Enabler for Continuous Processing of Biotherapeutics.
    Thakur G; Hebbi V; Parida S; Rathore AS
    Front Bioeng Biotechnol; 2020; 8():758. PubMed ID: 32719791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. KNT-artificial neural network model for flux prediction of ultrafiltration membrane producing drinking water.
    Oh HK; Yu MJ; Gwon EM; Koo JY; Kim SG; Koizumi A
    Water Sci Technol; 2004; 50(8):103-10. PubMed ID: 15566193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust artificial neural network for reliability and sensitivity analyses of complex non-linear systems.
    Oparaji U; Sheu RJ; Bankhead M; Austin J; Patelli E
    Neural Netw; 2017 Dec; 96():80-90. PubMed ID: 28987979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial neural network modelling of continuous wet granulation using a twin-screw extruder.
    Shirazian S; Kuhs M; Darwish S; Croker D; Walker GM
    Int J Pharm; 2017 Apr; 521(1-2):102-109. PubMed ID: 28163225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural network models for biological waste-gas treatment systems.
    Rene ER; Estefanía López M; Veiga MC; Kennes C
    N Biotechnol; 2011 Dec; 29(1):56-73. PubMed ID: 21784184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A three plus three parameters mechanistic model for viral filtration.
    Misra P; Sinha A; Rathore AS; Shukla A; Mir FQ
    Biotechnol Prog; 2017 Nov; 33(6):1538-1547. PubMed ID: 28699320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An artificial neural network for predicting the incidence of radiation pneumonitis.
    Su M; Miften M; Whiddon C; Sun X; Light K; Marks L
    Med Phys; 2005 Feb; 32(2):318-25. PubMed ID: 15789575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial neural network based modelling approach for municipal solid waste gasification in a fluidized bed reactor.
    Pandey DS; Das S; Pan I; Leahy JJ; Kwapinski W
    Waste Manag; 2016 Dec; 58():202-213. PubMed ID: 27590092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting outcomes in patients with perforated gastroduodenal ulcers: artificial neural network modelling indicates a highly complex disease.
    Søreide K; Thorsen K; Søreide JA
    Eur J Trauma Emerg Surg; 2015 Feb; 41(1):91-8. PubMed ID: 25621078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Process cost and facility considerations in the selection of primary cell culture clarification technology.
    Felo M; Christensen B; Higgins J
    Biotechnol Prog; 2013; 29(5):1239-45. PubMed ID: 23847160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial neural network-genetic algorithm based optimization for the adsorption of methylene blue and brilliant green from aqueous solution by graphite oxide nanoparticle.
    Ghaedi M; Zeinali N; Ghaedi AM; Teimuori M; Tashkhourian J
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 May; 125():264-77. PubMed ID: 24556135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Achieving a Successful Scale-Down Model and Optimized Economics through Parvovirus Filter Validation using Purified TrueSpikeTM Viruses.
    De Vilmorin P; Slocum A; Jaber T; Schaefer O; Ruppach H; Genest P
    PDA J Pharm Sci Technol; 2015; 69(3):440-9. PubMed ID: 26048749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of umbilical cord blood leptin and insulin based on anthropometric data by means of artificial neural network approach: identifying key maternal and neonatal factors.
    Guzmán-Bárcenas J; Hernández JA; Arias-Martínez J; Baptista-González H; Ceballos-Reyes G; Irles C
    BMC Pregnancy Childbirth; 2016 Jul; 16(1):179. PubMed ID: 27440187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.