These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 27453496)

  • 1. Truly trapped rainbow by utilizing nonreciprocal waveguides.
    Liu K; He S
    Sci Rep; 2016 Jul; 6():30206. PubMed ID: 27453496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slow wave and truly rainbow trapping in a one-way terahertz waveguide.
    Xu J; He P; Feng D; Yong K; Hong L; Shen Y; Zhou Y
    Opt Express; 2021 Mar; 29(7):11328-11341. PubMed ID: 33820247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 'Trapped rainbow' storage of light in metamaterials.
    Tsakmakidis KL; Boardman AD; Hess O
    Nature; 2007 Nov; 450(7168):397-401. PubMed ID: 18004380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Realization of broadband truly rainbow trapping in gradient-index metamaterials.
    Xu J; Xiao S; He P; Wang Y; Shen Y; Hong L; Luo Y; He B
    Opt Express; 2022 Jan; 30(3):3941-3953. PubMed ID: 35209642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Revealing the truth about 'trapped rainbow' storage of light in metamaterials.
    He S; He Y; Jin Y
    Sci Rep; 2012; 2():583. PubMed ID: 22900141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental demonstration of rainbow trapping of elastic waves in two-dimensional axisymmetric phononic crystal platesa).
    Ellouzi C; Zabihi A; Gormley L; Aghdasi F; Stojanoska K; Miri A; Jha R; Shen C
    J Acoust Soc Am; 2024 Mar; 155(3):1759-1766. PubMed ID: 38436424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trapping and releasing light by mechanical implementation in metamaterial waveguides.
    Chen Y; Gu J; Xie XC; Zhang W
    J Opt Soc Am A Opt Image Sci Vis; 2011 Feb; 28(2):272-7. PubMed ID: 21293532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthetic phonons enable nonreciprocal coupling to arbitrary resonator networks.
    Peterson CW; Kim S; Bernhard JT; Bahl G
    Sci Adv; 2018 Jun; 4(6):eaat0232. PubMed ID: 29888328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amber rainbow ribbon effect in broadband optical metamaterials.
    Zhao J; Wu X; Zhang D; Xu X; Wang X; Zhao X
    Nat Commun; 2024 Mar; 15(1):2613. PubMed ID: 38521781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. "Rainbow" trapping and releasing at telecommunication wavelengths.
    Gan Q; Ding YJ; Bartoli FJ
    Phys Rev Lett; 2009 Feb; 102(5):056801. PubMed ID: 19257533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-way surface magnetoplasmon cavity and its application for nonreciprocal devices.
    Liu K; Torki A; He S
    Opt Lett; 2016 Feb; 41(4):800-3. PubMed ID: 26872192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonreciprocal parity-time phase in magnetized waveguides.
    Zhang ZZ; Yuan JQ; Sun LS; Zhao B; Zhang YR; Kang M; Chen J
    Opt Express; 2019 Sep; 27(19):27385-27395. PubMed ID: 31674600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Realization of "trapped rainbow" in 1D slab waveguide with surface dispersion engineering.
    Yang R; Zhu W; Li J
    Opt Express; 2015 Mar; 23(5):6326-35. PubMed ID: 25836853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metastable modular metastructures for on-demand reconfiguration of band structures and nonreciprocal wave propagation.
    Wu Z; Zheng Y; Wang KW
    Phys Rev E; 2018 Feb; 97(2-1):022209. PubMed ID: 29548145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonreciprocal dielectric-loaded plasmonic waveguides using magneto-optical effect of Fe.
    Kaihara T; Shimizu H
    Opt Express; 2017 Jan; 25(2):730-748. PubMed ID: 28157962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-chip optical trapping and Raman spectroscopy using a TripleX dual-waveguide trap.
    Boerkamp M; van Leest T; Heldens J; Leinse A; Hoekman M; Heideman R; Caro J
    Opt Express; 2014 Dec; 22(25):30528-37. PubMed ID: 25606999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic rainbow trapping structures for light localization and spectrum splitting.
    Jang MS; Atwater H
    Phys Rev Lett; 2011 Nov; 107(20):207401. PubMed ID: 22181772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-line rainbow trapping based on plasmonic gratings in optical microfibers.
    Guan C; Shi J; Ding M; Wang P; Hua P; Yuan L; Brambilla G
    Opt Express; 2013 Jul; 21(14):16552-60. PubMed ID: 23938506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single ions trapped in a one-dimensional optical lattice.
    Enderlein M; Huber T; Schneider C; Schaetz T
    Phys Rev Lett; 2012 Dec; 109(23):233004. PubMed ID: 23368193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dipole force free optical control and cooling of nanofiber trapped atoms.
    Østfeldt C; Béguin JS; Pedersen FT; Polzik ES; Müller JH; Appel J
    Opt Lett; 2017 Nov; 42(21):4315-4318. PubMed ID: 29088152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.