BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 27453726)

  • 1. Transcriptome analysis reveals global regulation in response to CO2 supplementation in oleaginous microalga Coccomyxa subellipsoidea C-169.
    Peng H; Wei D; Chen G; Chen F
    Biotechnol Biofuels; 2016; 9():151. PubMed ID: 27453726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The augmented lipid productivity in an emerging oleaginous model alga Coccomyxa subellipsoidea by nitrogen manipulation strategy.
    Wang C; Wang Z; Luo F; Li Y
    World J Microbiol Biotechnol; 2017 Aug; 33(8):160. PubMed ID: 28752265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oil accumulation mechanisms of the oleaginous microalga Chlorella protothecoides revealed through its genome, transcriptomes, and proteomes.
    Gao C; Wang Y; Shen Y; Yan D; He X; Dai J; Wu Q
    BMC Genomics; 2014 Jul; 15(1):582. PubMed ID: 25012212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oleaginous Microalga
    Liu Y; Wei D; Chen W
    Front Bioeng Biotechnol; 2022; 10():921024. PubMed ID: 35733523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular characterization of CO
    Zhu B; Chen G; Cao X; Wei D
    Bioresour Technol; 2017 Nov; 244(Pt 2):1207-1215. PubMed ID: 28606753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The potential growth and lipid accumulation in Coccomyxa subellipsoidea triggered by glucose combining with sodium acetate.
    Wang Z; Luo F; Wang Z; Zhou R; Tang Y; Li Y
    World J Microbiol Biotechnol; 2019 Jul; 35(7):110. PubMed ID: 31280381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169.
    Msanne J; Xu D; Konda AR; Casas-Mollano JA; Awada T; Cahoon EB; Cerutti H
    Phytochemistry; 2012 Mar; 75():50-9. PubMed ID: 22226037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional insights into Chlorella sp. ABC-001: a comparative study of carbon fixation and lipid synthesis under different CO
    Koh HG; Cho JM; Jeon S; Chang YK; Lee B; Kang NK
    Biotechnol Biofuels Bioprod; 2023 Jul; 16(1):113. PubMed ID: 37454088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative metabolic profiling of the lipid-producing green microalga
    Chen H; Zheng Y; Zhan J; He C; Wang Q
    Biotechnol Biofuels; 2017; 10():153. PubMed ID: 28630648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The enhanced biomass and lipid accumulation in Coccomyxa subellipsoidea with an integrated treatment strategy initiated by brewery effluent and phytohormones.
    Liu T; Luo F; Wang Z; Li Y
    World J Microbiol Biotechnol; 2018 Jan; 34(2):25. PubMed ID: 29330693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic metabolic profiling together with transcription analysis reveals salinity-induced starch-to-lipid biosynthesis in alga Chlamydomonas sp. JSC4.
    Ho SH; Nakanishi A; Kato Y; Yamasaki H; Chang JS; Misawa N; Hirose Y; Minagawa J; Hasunuma T; Kondo A
    Sci Rep; 2017 Apr; 7():45471. PubMed ID: 28374798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon and Acyl Chain Flux during Stress-induced Triglyceride Accumulation by Stable Isotopic Labeling of the Polar Microalga Coccomyxa subellipsoidea C169.
    Allen JW; DiRusso CC; Black PN
    J Biol Chem; 2017 Jan; 292(1):361-374. PubMed ID: 27903654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-based metabolic mapping and 13C flux analysis reveal systematic properties of an oleaginous microalga Chlorella protothecoides.
    Wu C; Xiong W; Dai J; Wu Q
    Plant Physiol; 2015 Feb; 167(2):586-99. PubMed ID: 25511434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and Characterization of MiRNAs in
    Yang R; Chen G; Peng H; Wei D
    Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31337051
    [No Abstract]   [Full Text] [Related]  

  • 15. Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology.
    Liang MH; Jiang JG
    Prog Lipid Res; 2013 Oct; 52(4):395-408. PubMed ID: 23685199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomass, lipid accumulation kinetics, and the transcriptome of heterotrophic oleaginous microalga Tetradesmus bernardii under different carbon and nitrogen sources.
    Gao B; Wang F; Huang L; Liu H; Zhong Y; Zhang C
    Biotechnol Biofuels; 2021 Jan; 14(1):4. PubMed ID: 33407769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elevated CO2 improves lipid accumulation by increasing carbon metabolism in Chlorella sorokiniana.
    Sun Z; Chen YF; Du J
    Plant Biotechnol J; 2016 Feb; 14(2):557-66. PubMed ID: 25973988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA-Seq transcriptomic analysis with Bag2D software identifies key pathways enhancing lipid yield in a high lipid-producing mutant of the non-model green alga Dunaliella tertiolecta.
    Yao L; Tan TW; Ng YK; Ban KH; Shen H; Lin H; Lee YK
    Biotechnol Biofuels; 2015; 8():191. PubMed ID: 26613001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induction of oil accumulation by heat stress is metabolically distinct from N stress in the green microalgae Coccomyxa subellipsoidea C169.
    Allen JW; Tevatia R; Demirel Y; DiRusso CC; Black PN
    PLoS One; 2018; 13(9):e0204505. PubMed ID: 30261009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptomic analysis of the oleaginous microalga Neochloris oleoabundans reveals metabolic insights into triacylglyceride accumulation.
    Rismani-Yazdi H; Haznedaroglu BZ; Hsin C; Peccia J
    Biotechnol Biofuels; 2012 Sep; 5(1):74. PubMed ID: 23006831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.