These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 27453943)

  • 1. Stabilizing electrodeposition in elastic solid electrolytes containing immobilized anions.
    Tikekar MD; Archer LA; Koch DL
    Sci Adv; 2016 Jul; 2(7):e1600320. PubMed ID: 27453943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries.
    Tu Z; Nath P; Lu Y; Tikekar MD; Archer LA
    Acc Chem Res; 2015 Nov; 48(11):2947-56. PubMed ID: 26496667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes.
    Lu Y; Tu Z; Archer LA
    Nat Mater; 2014 Oct; 13(10):961-9. PubMed ID: 25108613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Confining electrodeposition of metals in structured electrolytes.
    Choudhury S; Vu D; Warren A; Tikekar MD; Tu Z; Archer LA
    Proc Natl Acad Sci U S A; 2018 Jun; 115(26):6620-6625. PubMed ID: 29891658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchical Nanocellulose-Based Gel Polymer Electrolytes for Stable Na Electrodeposition in Sodium Ion Batteries.
    Mittal N; Tien S; Lizundia E; Niederberger M
    Small; 2022 Oct; 18(43):e2107183. PubMed ID: 35224853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of High Flash Point Electrolytes and PE-Based Separators for Li-Ion Batteries.
    Hofmann A; Kaufmann C; Müller M; Hanemann T
    Int J Mol Sci; 2015 Aug; 16(9):20258-76. PubMed ID: 26343636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specific ion effects on copper electroplating.
    Giurlani W; Fidi A; Anselmi E; Pizzetti F; Bonechi M; Carretti E; Lo Nostro P; Innocenti M
    Colloids Surf B Biointerfaces; 2023 May; 225():113287. PubMed ID: 37004387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. All-Solid-State Lithium-Ion Batteries with Grafted Ceramic Nanoparticles Dispersed in Solid Polymer Electrolytes.
    Lago N; Garcia-Calvo O; Lopez del Amo JM; Rojo T; Armand M
    ChemSusChem; 2015 Sep; 8(18):3039-43. PubMed ID: 26373359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stabilizing Zinc Electrodeposition in a Battery Anode by Controlling Crystal Growth.
    Jin S; Zhang D; Sharma A; Zhao Q; Shao Y; Chen P; Zheng J; Yin J; Deng Y; Biswal P; Archer LA
    Small; 2021 Aug; 17(33):e2101798. PubMed ID: 34228391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separator Effect on Zinc Electrodeposition Behavior and Its Implication for Zinc Battery Lifetime.
    Zhang Y; Yang G; Lehmann ML; Wu C; Zhao L; Saito T; Liang Y; Nanda J; Yao Y
    Nano Lett; 2021 Dec; 21(24):10446-10452. PubMed ID: 34870997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designing Polymeric Interphases for Stable Lithium Metal Deposition.
    Stalin S; Tikekar M; Biswal P; Li G; Johnson HEN; Deng Y; Zhao Q; Vu D; Coates GW; Archer LA
    Nano Lett; 2020 Aug; 20(8):5749-5758. PubMed ID: 32479086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stabilizing electrochemical interfaces in viscoelastic liquid electrolytes.
    Wei S; Cheng Z; Nath P; Tikekar MD; Li G; Archer LA
    Sci Adv; 2018 Mar; 4(3):eaao6243. PubMed ID: 29582017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decoupled Ion Transport in Protein-Based Solid Electrolyte through
    Ying C; Fu X; Zhong WH; Liu J
    J Phys Chem Lett; 2021 Oct; 12(39):9429-9435. PubMed ID: 34554749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lithium dendrite growth mechanisms in polymer electrolytes and prevention strategies.
    Barai P; Higa K; Srinivasan V
    Phys Chem Chem Phys; 2017 Aug; 19(31):20493-20505. PubMed ID: 28726884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photopolymer Electrolytes for Sustainable, Upscalable, Safe, and Ambient-Temperature Sodium-Ion Secondary Batteries.
    Bella F; Colò F; Nair JR; Gerbaldi C
    ChemSusChem; 2015 Nov; 8(21):3668-76. PubMed ID: 26437583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-ion polymer electrolyte membranes enable lithium-ion batteries with a broad operating temperature range.
    Cai W; Zhang Y; Li J; Sun Y; Cheng H
    ChemSusChem; 2014 Apr; 7(4):1063-7. PubMed ID: 24623577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of carbamate-modified disiloxane in porous PVDF-HFP membranes: new electrolytes/separators for lithium-ion batteries.
    Jeschke S; Mutke M; Jiang Z; Alt B; Wiemhöfer HD
    Chemphyschem; 2014 Jun; 15(9):1761-71. PubMed ID: 24737746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing solid-liquid interphases for sodium batteries.
    Choudhury S; Wei S; Ozhabes Y; Gunceler D; Zachman MJ; Tu Z; Shin JH; Nath P; Agrawal A; Kourkoutis LF; Arias TA; Archer LA
    Nat Commun; 2017 Oct; 8(1):898. PubMed ID: 29026067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quasi-Solid Electrolytes for High Temperature Lithium Ion Batteries.
    Kalaga K; Rodrigues MT; Gullapalli H; Babu G; Arava LM; Ajayan PM
    ACS Appl Mater Interfaces; 2015 Nov; 7(46):25777-83. PubMed ID: 26535786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping the anode surface-electrolyte interphase: investigating a life limiting process of lithium primary batteries.
    Bock DC; Tappero RV; Takeuchi KJ; Marschilok AC; Takeuchi ES
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5429-37. PubMed ID: 25690846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.