These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 27453943)

  • 21. Conductivities and transport properties of gelled electrolytes with and without an ionic liquid for Li and Li-ion batteries.
    Bansal D; Cassel F; Croce F; Hendrickson M; Plichta E; Salomon M
    J Phys Chem B; 2005 Mar; 109(10):4492-6. PubMed ID: 16851523
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Surface and interfacial tensions of hofmeister electrolytes.
    dos SA; Levin Y
    Faraday Discuss; 2013; 160():75-87; discussion 103-20. PubMed ID: 23795494
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessment of the mechanical suppression of nonuniform electrodeposition in lithium metal batteries.
    Chang SJ; Chen CH; Chen KC
    Phys Chem Chem Phys; 2022 May; 24(18):11086-11095. PubMed ID: 35471206
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enabling LiTFSI-based electrolytes for safer lithium-ion batteries by using linear fluorinated carbonates as (Co)solvent.
    Kalhoff J; Bresser D; Bolloli M; Alloin F; Sanchez JY; Passerini S
    ChemSusChem; 2014 Oct; 7(10):2939-46. PubMed ID: 25138922
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles.
    Choudhury S; Mangal R; Agrawal A; Archer LA
    Nat Commun; 2015 Dec; 6():10101. PubMed ID: 26634644
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Grain Boundary Softening: A Potential Mechanism for Lithium Metal Penetration through Stiff Solid Electrolytes.
    Yu S; Siegel DJ
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):38151-38158. PubMed ID: 30360045
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Homogeneous lithium electrodeposition with pyrrolidinium-based ionic liquid electrolytes.
    Grande L; von Zamory J; Koch SL; Kalhoff J; Paillard E; Passerini S
    ACS Appl Mater Interfaces; 2015 Mar; 7(10):5950-8. PubMed ID: 25714124
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lithium Electrodeposition Dynamics in Aprotic Electrolyte Observed in Situ via Transmission Electron Microscopy.
    Leenheer AJ; Jungjohann KL; Zavadil KR; Sullivan JP; Harris CT
    ACS Nano; 2015 Apr; 9(4):4379-89. PubMed ID: 25785517
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries.
    Khurana R; Schaefer JL; Archer LA; Coates GW
    J Am Chem Soc; 2014 May; 136(20):7395-402. PubMed ID: 24754503
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ionic liquid-based membranes as electrolytes for advanced lithium polymer batteries.
    Navarra MA; Manzi J; Lombardo L; Panero S; Scrosati B
    ChemSusChem; 2011 Jan; 4(1):125-30. PubMed ID: 21226222
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flexible carbon nanotube--Cu2O hybrid electrodes for li-ion batteries.
    Goyal A; Reddy AL; Ajayan PM
    Small; 2011 Jun; 7(12):1709-13. PubMed ID: 21574248
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ionic-Liquid-Based Polymer Electrolytes for Battery Applications.
    Osada I; de Vries H; Scrosati B; Passerini S
    Angew Chem Int Ed Engl; 2016 Jan; 55(2):500-13. PubMed ID: 26783056
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of Propylene Carbonate Content in CsPF₆-Containing Electrolytes on the Enhanced Performances of Graphite Electrode for Lithium-Ion Batteries.
    Zheng J; Yan P; Cao R; Xiang H; Engelhard MH; Polzin BJ; Wang C; Zhang JG; Xu W
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5715-22. PubMed ID: 26862677
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Direct visualization of solid electrolyte interphase formation in lithium-ion batteries with in situ electrochemical transmission electron microscopy.
    Unocic RR; Sun XG; Sacci RL; Adamczyk LA; Alsem DH; Dai S; Dudney NJ; More KL
    Microsc Microanal; 2014 Aug; 20(4):1029-37. PubMed ID: 24994021
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ionic-liquid-nanoparticle hybrid electrolytes: applications in lithium metal batteries.
    Lu Y; Korf K; Kambe Y; Tu Z; Archer LA
    Angew Chem Int Ed Engl; 2014 Jan; 53(2):488-92. PubMed ID: 24282090
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Excellent stability of a lithium-ion-conducting solid electrolyte upon reversible Li(+) /H(+) exchange in aqueous solutions.
    Ma C; Rangasamy E; Liang C; Sakamoto J; More KL; Chi M
    Angew Chem Int Ed Engl; 2015 Jan; 54(1):129-33. PubMed ID: 25331968
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nature of inclined growth in thin-layer electrodeposition under uniform magnetic fields.
    Soba A; González G; Calivar L; Marshall G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051612. PubMed ID: 23214798
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ionic Liquid Hybrid Electrolytes for Lithium-Ion Batteries: A Key Role of the Separator-Electrolyte Interface in Battery Electrochemistry.
    Huie MM; DiLeo RA; Marschilok AC; Takeuchi KJ; Takeuchi ES
    ACS Appl Mater Interfaces; 2015 Jun; 7(22):11724-31. PubMed ID: 25710110
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrolyte Mixtures Based on Ethylene Carbonate and Dimethyl Sulfone for Li-Ion Batteries with Improved Safety Characteristics.
    Hofmann A; Migeot M; Thißen E; Schulz M; Heinzmann R; Indris S; Bergfeldt T; Lei B; Ziebert C; Hanemann T
    ChemSusChem; 2015 Jun; 8(11):1892-900. PubMed ID: 25950145
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.