These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 27454032)

  • 21. Biomolecule-assisted synthesis and electrochemical hydrogen storage of Bi2S3 flowerlike patterns with well-aligned nanorods.
    Zhang B; Ye X; Hou W; Zhao Y; Xie Y
    J Phys Chem B; 2006 May; 110(18):8978-85. PubMed ID: 16671704
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Construction of Bi
    Jia Y; Liu P; Wang Q; Wu Y; Cao D; Qiao QA
    J Colloid Interface Sci; 2021 Mar; 585():459-469. PubMed ID: 33268060
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Construction of Zn
    Zhang C; Wang W; Zhao M; Zhang J; Zha Z; Cheng S; Zheng H; Qian H
    J Colloid Interface Sci; 2019 Jun; 546():303-311. PubMed ID: 30927594
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photoelectrochemical Conversion from Graphitic C3N4 Quantum Dot Decorated Semiconductor Nanowires.
    An T; Tang J; Zhang Y; Quan Y; Gong X; Al-Enizi AM; Elzatahry AA; Zhang L; Zheng G
    ACS Appl Mater Interfaces; 2016 May; 8(20):12772-9. PubMed ID: 27149607
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced Photoelectrochemical Behavior of H-TiO
    Wang X; Estradé S; Lin Y; Yu F; Lopez-Conesa L; Zhou H; Gurram SK; Peiró F; Fan Z; Shen H; Schaefer L; Braeuer G; Waag A
    Nanoscale Res Lett; 2017 Dec; 12(1):336. PubMed ID: 28482648
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Plasmon-Enhanced Photoelectrochemical Current and Hydrogen Production of (MoS
    Li YY; Wang JH; Luo ZJ; Chen K; Cheng ZQ; Ma L; Ding SJ; Zhou L; Wang QQ
    Sci Rep; 2017 Aug; 7(1):7178. PubMed ID: 28775346
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly sensitive photoelectrochemical sensing of bisphenol A based on zinc phthalocyanine/TiO
    Fan Z; Fan L; Shuang S; Dong C
    Talanta; 2018 Nov; 189():16-23. PubMed ID: 30086901
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Controlled fabrication of Sn/TiO2 nanorods for photoelectrochemical water splitting.
    Sun B; Shi T; Peng Z; Sheng W; Jiang T; Liao G
    Nanoscale Res Lett; 2013 Nov; 8(1):462. PubMed ID: 24191909
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Facile fabrication of hierarchical TiO2 nanobelt/ZnO nanorod heterogeneous nanostructure: an efficient photoanode for water splitting.
    Pan K; Dong Y; Zhou W; Pan Q; Xie Y; Xie T; Tian G; Wang G
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8314-20. PubMed ID: 23957748
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Morphology modulation of SrTiO3/TiO2 heterostructures for enhanced photoelectrochemical performance.
    Jiao Z; Chen T; Yu H; Wang T; Lu G; Bi Y
    J Colloid Interface Sci; 2014 Apr; 419():95-101. PubMed ID: 24491336
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermodynamically driven one-dimensional evolution of anatase TiO2 nanorods: one-step hydrothermal synthesis for emerging intrinsic superiority of dimensionality.
    Chen J; Yang HB; Miao J; Wang HY; Liu B
    J Am Chem Soc; 2014 Oct; 136(43):15310-8. PubMed ID: 25290360
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays.
    Wolcott A; Smith WA; Kuykendall TR; Zhao Y; Zhang JZ
    Small; 2009 Jan; 5(1):104-11. PubMed ID: 19040214
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comprehensive Study of the Growth Mechanism and Photoelectrochemical Activity of a BiVO
    Hong C; Kim YI; Seo JH; Kim JH; Ma A; Lim YJ; Seo D; Baek SY; Jung H; Nam KM
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):39713-39719. PubMed ID: 32569460
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A visible-light driven Bi
    Ding YH; Zhang XL; Zhang N; Zhang JY; Zhang R; Liu YF; Fang YZ
    Dalton Trans; 2018 Jan; 47(3):684-692. PubMed ID: 29099525
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Morphology controlled synthesis of spherical Bi2S3 flowers.
    Tang CJ; Wang GZ; Wang HQ; Zhang YX; Li GH
    J Nanosci Nanotechnol; 2010 Aug; 10(8):5451-5. PubMed ID: 21125917
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In Situ Growth of the Bi
    Kim JH; Ma A; Jung H; Kim HY; Choe HR; Kim YH; Nam KM
    ACS Omega; 2019 Oct; 4(17):17359-17365. PubMed ID: 31656909
    [TBL] [Abstract][Full Text] [Related]  

  • 37. One-pot controlled synthesis of sea-urchin shaped Bi2S3/CdS hierarchical heterostructures with excellent visible light photocatalytic activity.
    Shi Y; Chen Y; Tian G; Fu H; Pan K; Zhou J; Yan H
    Dalton Trans; 2014 Aug; 43(32):12396-404. PubMed ID: 24993521
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-performance self-powered UV photodetectors based on TiO2 nano-branched arrays.
    Xie Y; Wei L; Li Q; Chen Y; Yan S; Jiao J; Liu G; Mei L
    Nanotechnology; 2014 Feb; 25(7):075202. PubMed ID: 24451997
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simultaneous etching and doping of TiO2 nanowire arrays for enhanced photoelectrochemical performance.
    Wang Y; Zhang YY; Tang J; Wu H; Xu M; Peng Z; Gong XG; Zheng G
    ACS Nano; 2013 Oct; 7(10):9375-83. PubMed ID: 24047133
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Towards high efficiency air-processed near-infrared responsive photovoltaics: bulk heterojunction solar cells based on PbS/CdS core-shell quantum dots and TiO2 nanorod arrays.
    Gonfa BA; Kim MR; Delegan N; Tavares AC; Izquierdo R; Wu N; El Khakani MA; Ma D
    Nanoscale; 2015 Jun; 7(22):10039-49. PubMed ID: 25975363
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.