BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 27454100)

  • 21. The effect of EDDS addition on the phytoextraction efficiency from Pb contaminated soil by Sedum alfredii Hance.
    Wang X; Wang Y; Mahmood Q; Islam E; Jin X; Li T; Yang X; Liu D
    J Hazard Mater; 2009 Aug; 168(1):530-5. PubMed ID: 19303708
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cd and Pb accumulation characteristics of phytostabilizer Athyrium wardii (Hook.) grown in soils contaminated with Cd and Pb.
    Zhan J; Li T; Yu H; Zhang X
    Environ Sci Pollut Res Int; 2018 Oct; 25(29):29026-29037. PubMed ID: 30109689
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Increased accumulation of Pb and Cd from contaminated soil with Scirpus triqueter by the combined application of NTA and APG.
    Hu X; Liu X; Zhang X; Cao L; Chen J; Yu H
    Chemosphere; 2017 Dec; 188():397-402. PubMed ID: 28898773
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of synthetic and organic biodegradable chelants in augmenting cadmium phytoextraction in
    Sharma P; Rathee S; Ahmad M; Raina R; Batish DR; Singh HP
    Int J Phytoremediation; 2023; 25(9):1106-1115. PubMed ID: 36264021
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Zn phytoextraction and recycling of alfalfa biomass as potential Zn-biofortified feed crop.
    Wang X; Fernandes de Souza M; Li H; Tack FMG; Ok YS; Meers E
    Sci Total Environ; 2021 Mar; 760():143424. PubMed ID: 33223175
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lead accumulation and tolerance characteristics of Athyrium wardii (Hook.) as a potential phytostabilizer.
    Zou T; Li T; Zhang X; Yu H; Luo H
    J Hazard Mater; 2011 Feb; 186(1):683-9. PubMed ID: 21144654
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ethylenediamine disuccinic acid enhanced phytoextraction of nickel from contaminated soils using Coronopus didymus (L.) Sm.
    Sidhu GPS; Bali AS; Singh HP; Batish DR; Kohli RK
    Chemosphere; 2018 Aug; 205():234-243. PubMed ID: 29702343
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metal partitioning in plant-substrate-water compartments under EDDS-assisted phytoextraction of pyrite waste with Brassica carinata A. Braun.
    Vamerali T; Bandiera M; Lucchini P; Mosca G
    Environ Sci Pollut Res Int; 2015 Feb; 22(4):2434-46. PubMed ID: 24859698
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of EDDS and citrate on the uptake of lead in hydroponically grown Matthiola flavida.
    Mohtadi A; Ghaderian SM; Schat H
    Chemosphere; 2013 Oct; 93(6):986-9. PubMed ID: 23806486
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lead accumulation and soil microbial activity in the rhizosphere of the mining and non-mining ecotypes of Athyrium wardii (Hook.) Makino in adaptation to lead-contaminated soils.
    Zhang Q; Zhan J; Yu H; Li T; Zhang X; Huang H; Zhang Y
    Environ Sci Pollut Res Int; 2019 Nov; 26(32):32957-32966. PubMed ID: 31512134
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heavy metal extraction from an artificially contaminated sandy soil under EDDS deficiency: significance of humic acid and chelant mixture.
    Yip TC; Yan DY; Yui MM; Tsang DC; Lo IM
    Chemosphere; 2010 Jun; 80(4):416-21. PubMed ID: 20427074
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ethylenediaminedissuccinate as a new chelate for environmentally safe enhanced lead phytoextraction.
    Grcman H; Vodnik D; Velikonja-Bolta S; Lestan D
    J Environ Qual; 2003; 32(2):500-6. PubMed ID: 12708673
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The use of maize and poplar in chelant-enhanced phytoextraction of lead from contaminated agricultural soils.
    Komárek M; Tlustos P; Száková J; Chrastný V; Ettler V
    Chemosphere; 2007 Mar; 67(4):640-51. PubMed ID: 17184814
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Extraction of heavy metals from e-waste contaminated soils using EDDS.
    Yang R; Luo C; Zhang G; Li X; Shen Z
    J Environ Sci (China); 2012; 24(11):1985-94. PubMed ID: 23534233
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS.
    Luo C; Shen Z; Li X
    Chemosphere; 2005 Mar; 59(1):1-11. PubMed ID: 15698638
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heap leaching of lead contaminated soil using biodegradable chelator [S,S]-ethylenediamine disuccinate.
    Finzgar N; Kos B; Lestan D
    Environ Technol; 2005 May; 26(5):553-60. PubMed ID: 15974273
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Co-inoculation effect of plant-growth-promoting rhizobacteria and rhizobium on EDDS assisted phytoremediation of Cu contaminated soils.
    Ju W; Liu L; Jin X; Duan C; Cui Y; Wang J; Ma D; Zhao W; Wang Y; Fang L
    Chemosphere; 2020 Sep; 254():126724. PubMed ID: 32334248
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Root-associated bacterial microbiome shaped by root selective effects benefits phytostabilization by Athyrium wardii (Hook.).
    Zhang Y; Zhan J; Ma C; Liu W; Huang H; Yu H; Christie P; Li T; Wu L
    Ecotoxicol Environ Saf; 2024 Jan; 269():115739. PubMed ID: 38016191
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lead accumulation by tall fescue (Festuca arundinacea Schreb.) grown on a lead-contaminated soil.
    Begonia MT; Begonia GB; Ighoavodha M; Gilliard D
    Int J Environ Res Public Health; 2005 Aug; 2(2):228-33. PubMed ID: 16705822
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative Activation Process of Pb, Cd and Tl Using Chelating Agents from Contaminated Red Soils.
    Liu L; Luo D; Yao G; Huang X; Wei L; Liu Y; Wu Q; Mai X; Liu G; Xiao T
    Int J Environ Res Public Health; 2020 Jan; 17(2):. PubMed ID: 31941097
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.