These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 27454335)
1. Global Efforts in the Development of Vaccines for Tuberculosis: Requirements for Improved Vaccines Against Mycobacterium tuberculosis. Méndez-Samperio P Scand J Immunol; 2016 Oct; 84(4):204-10. PubMed ID: 27454335 [TBL] [Abstract][Full Text] [Related]
2. Genome wide approaches discover novel Mycobacterium tuberculosis antigens as correlates of infection, disease, immunity and targets for vaccination. Coppola M; Ottenhoff TH Semin Immunol; 2018 Oct; 39():88-101. PubMed ID: 30327124 [TBL] [Abstract][Full Text] [Related]
3. Novel vaccination strategies and approaches against human tuberculosis. Méndez-Samperio P Scand J Immunol; 2019 Aug; 90(2):e12774. PubMed ID: 31054193 [TBL] [Abstract][Full Text] [Related]
4. Integrating knowledge of Mycobacterium tuberculosis pathogenesis for the design of better vaccines. Mascart F; Locht C Expert Rev Vaccines; 2015; 14(12):1573-85. PubMed ID: 26517361 [TBL] [Abstract][Full Text] [Related]
5. Immunization strategies against pulmonary tuberculosis: considerations of T cell geography. Horvath CN; Xing Z Adv Exp Med Biol; 2013; 783():267-78. PubMed ID: 23468114 [TBL] [Abstract][Full Text] [Related]
6. Delivery of a multivalent scrambled antigen vaccine induces broad spectrum immunity and protection against tuberculosis. West NP; Thomson SA; Triccas JA; Medveczky CJ; Ramshaw IA; Britton WJ Vaccine; 2011 Oct; 29(44):7759-65. PubMed ID: 21846485 [TBL] [Abstract][Full Text] [Related]
7. Heat-Shock Protein gp96 Enhances T Cell Responses and Protective Potential to Bacillus Calmette-Guérin Vaccine. Ding Y; Zheng H; Feng C; Wang B; Liu C; Mi K; Cao H; Meng S Scand J Immunol; 2016 Oct; 84(4):222-8. PubMed ID: 27417661 [TBL] [Abstract][Full Text] [Related]
8. Vaccine-induced anti-tuberculosis protective immunity in mice correlates with the magnitude and quality of multifunctional CD4 T cells. Derrick SC; Yabe IM; Yang A; Morris SL Vaccine; 2011 Apr; 29(16):2902-9. PubMed ID: 21338678 [TBL] [Abstract][Full Text] [Related]
9. [Novel vaccines against M. tuberculosis]. Okada M Kekkaku; 2006 Dec; 81(12):745-51. PubMed ID: 17240920 [TBL] [Abstract][Full Text] [Related]
10. Understanding and overcoming the barriers to T cell-mediated immunity against tuberculosis. Urdahl KB Semin Immunol; 2014 Dec; 26(6):578-87. PubMed ID: 25453230 [TBL] [Abstract][Full Text] [Related]
11. Humanized NOG mice as a model for tuberculosis vaccine-induced immunity: a comparative analysis with the mouse and guinea pig models of tuberculosis. Grover A; Troy A; Rowe J; Troudt JM; Creissen E; McLean J; Banerjee P; Feuer G; Izzo AA Immunology; 2017 Sep; 152(1):150-162. PubMed ID: 28502122 [TBL] [Abstract][Full Text] [Related]
13. Live attenuated TB vaccines representing the three modern Mycobacterium tuberculosis lineages reveal that the Euro-American genetic background confers optimal vaccine potential. Pérez I; Uranga S; Sayes F; Frigui W; Samper S; Arbués A; Aguiló N; Brosch R; Martín C; Gonzalo-Asensio J EBioMedicine; 2020 May; 55():102761. PubMed ID: 32361249 [TBL] [Abstract][Full Text] [Related]
14. Lymph node targeting of BCG vaccines amplifies CD4 and CD8 T-cell responses and protection against Mycobacterium tuberculosis. Waeckerle-Men Y; Bruffaerts N; Liang Y; Jurion F; Sander P; Kündig TM; Huygen K; Johansen P Vaccine; 2013 Feb; 31(7):1057-64. PubMed ID: 23273509 [TBL] [Abstract][Full Text] [Related]
15. The diagnostic potential of MPT63-derived HLA-A*0201-restricted CD8+ T-cell epitopes for active pulmonary tuberculosis. Duan Z; Li D; Jia Q; Xu J; Chen X; Xu Z; Liu H; Chen B; Wen J Microbiol Immunol; 2015 Dec; 59(12):705-15. PubMed ID: 26577013 [TBL] [Abstract][Full Text] [Related]
16. Characterization of the protective T-cell response generated in CD4-deficient mice by a live attenuated Mycobacterium tuberculosis vaccine. Derrick SC; Evering TH; Sambandamurthy VK; Jalapathy KV; Hsu T; Chen B; Chen M; Russell RG; Junqueira-Kipnis AP; Orme IM; Porcelli SA; Jacobs WR; Morris SL Immunology; 2007 Feb; 120(2):192-206. PubMed ID: 17076705 [TBL] [Abstract][Full Text] [Related]
17. Development of tuberculosis vaccines in clinical trials: Current status. Méndez-Samperio P Scand J Immunol; 2018 Oct; 88(4):e12710. PubMed ID: 30175850 [TBL] [Abstract][Full Text] [Related]
18. Tuberculosis vaccines: time to think about the next generation. Kaufmann SH Semin Immunol; 2013 Apr; 25(2):172-81. PubMed ID: 23706597 [TBL] [Abstract][Full Text] [Related]
19. Role of B Cells in Mucosal Vaccine-Induced Protective CD8+ T Cell Immunity against Pulmonary Tuberculosis. Khera AK; Afkhami S; Lai R; Jeyanathan M; Zganiacz A; Mandur T; Hammill J; Damjanovic D; Xing Z J Immunol; 2015 Sep; 195(6):2900-7. PubMed ID: 26268652 [TBL] [Abstract][Full Text] [Related]
20. Aerosol vaccines for tuberculosis: a fine line between protection and pathology. Hokey DA; Misra A Tuberculosis (Edinb); 2011 Jan; 91(1):82-5. PubMed ID: 21067975 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]