These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
977 related articles for article (PubMed ID: 27454418)
21. Momordica charantia and type 2 diabetes: from in vitro to human studies. Habicht SD; Ludwig C; Yang RY; Krawinkel MB Curr Diabetes Rev; 2014 Jan; 10(1):48-60. PubMed ID: 24295371 [TBL] [Abstract][Full Text] [Related]
22. Modulatory effect of bitter gourd (Momordica charantia LINN.) on alterations in kidney heparan sulfate in streptozotocin-induced diabetic rats. Kumar GS; Shetty AK; Salimath PV J Ethnopharmacol; 2008 Jan; 115(2):276-83. PubMed ID: 18024034 [TBL] [Abstract][Full Text] [Related]
23. Some toxicological studies of Momordica charantia L. on albino rats in normal and alloxan diabetic rats. Abd El Sattar El Batran S; El-Gengaihi SE; El Shabrawy OA J Ethnopharmacol; 2006 Nov; 108(2):236-42. PubMed ID: 16815658 [TBL] [Abstract][Full Text] [Related]
24. Protein extracts from Momordica charantia var. charantia and M. charantia var. muricata show anti-lipidemic and antioxidant properties in experimental type 2 diabetic rats. Poovitha S; Parani M J Food Biochem; 2020 Sep; 44(9):e13370. PubMed ID: 32643818 [TBL] [Abstract][Full Text] [Related]
25. In Vitro Evaluation of the Anti-Diabetic Potential of Aqueous Acetone Akinyede KA; Oyewusi HA; Hughes GD; Ekpo OE; Oguntibeju OO Molecules; 2021 Dec; 27(1):. PubMed ID: 35011387 [TBL] [Abstract][Full Text] [Related]
26. Susceptibility of poultry associated bacterial pathogens to Momordica charantia fruits and evaluation of in vitro biological properties. Lydia D E; Gupta C; Khusro A; Salem AZM Microb Pathog; 2019 Jul; 132():222-229. PubMed ID: 31059755 [TBL] [Abstract][Full Text] [Related]
27. In vitro alpha-glucosidase and alpha-amylase enzyme inhibitory effects of Andrographis paniculata extract and andrographolide. Subramanian R; Asmawi MZ; Sadikun A Acta Biochim Pol; 2008; 55(2):391-8. PubMed ID: 18511986 [TBL] [Abstract][Full Text] [Related]
28. Natural Prenylchalconaringenins and Prenylnaringenins as Antidiabetic Agents: α-Glucosidase and α-Amylase Inhibition and in Vivo Antihyperglycemic and Antihyperlipidemic Effects. Sun H; Wang D; Song X; Zhang Y; Ding W; Peng X; Zhang X; Li Y; Ma Y; Wang R; Yu P J Agric Food Chem; 2017 Mar; 65(8):1574-1581. PubMed ID: 28132506 [TBL] [Abstract][Full Text] [Related]
29. α-Glucosidase and α-amylase inhibitors from Myrcia spp.: a stronger alternative to acarbose? Figueiredo-González M; Grosso C; Valentão P; Andrade PB J Pharm Biomed Anal; 2016 Jan; 118():322-327. PubMed ID: 26590699 [TBL] [Abstract][Full Text] [Related]
30. Antioxidant properties of Momordica Charantia (bitter gourd) seeds on Streptozotocin induced diabetic rats. Sathishsekar D; Subramanian S Asia Pac J Clin Nutr; 2005; 14(2):153-8. PubMed ID: 15927932 [TBL] [Abstract][Full Text] [Related]
31. Evaluation of In Vitro α-Amylase and α-Glucosidase Inhibitory Potentials of 14 Medicinal Plants Constituted in Thai Folk Antidiabetic Formularies. Somtimuang C; Olatunji OJ; Ovatlarnporn C Chem Biodivers; 2018 Apr; 15(4):e1800025. PubMed ID: 29460340 [TBL] [Abstract][Full Text] [Related]
33. Antidiabetic effect of aqueous-ethanol extract from the aerial parts of Kumar A; Aswal S; Chauhan A; Semwal RB; Singh R; Andola HC; Joshi SK; Semwal DK Nat Prod Res; 2022 Mar; 36(5):1300-1305. PubMed ID: 33331175 [No Abstract] [Full Text] [Related]
34. Persimmon Tannin Decreased the Glycemic Response through Decreasing the Digestibility of Starch and Inhibiting α-Amylase, α-Glucosidase, and Intestinal Glucose Uptake. Li K; Yao F; Du J; Deng X; Li C J Agric Food Chem; 2018 Feb; 66(7):1629-1637. PubMed ID: 29388426 [TBL] [Abstract][Full Text] [Related]
35. Selected tea and tea pomace extracts inhibit intestinal α-glucosidase activity in vitro and postprandial hyperglycemia in vivo. Oh J; Jo SH; Kim JS; Ha KS; Lee JY; Choi HY; Yu SY; Kwon YI; Kim YC Int J Mol Sci; 2015 Apr; 16(4):8811-25. PubMed ID: 25906471 [TBL] [Abstract][Full Text] [Related]
36. Suppressive Effect of the α-Amylase Inhibitor Albumin from Buckwheat ( Ninomiya K; Ina S; Hamada A; Yamaguchi Y; Akao M; Shinmachi F; Kumagai H; Kumagai H Nutrients; 2018 Oct; 10(10):. PubMed ID: 30326572 [TBL] [Abstract][Full Text] [Related]
37. Diphlorethohydroxycarmalol isolated from Ishige okamurae, a brown algae, a potent alpha-glucosidase and alpha-amylase inhibitor, alleviates postprandial hyperglycemia in diabetic mice. Heo SJ; Hwang JY; Choi JI; Han JS; Kim HJ; Jeon YJ Eur J Pharmacol; 2009 Aug; 615(1-3):252-6. PubMed ID: 19482018 [TBL] [Abstract][Full Text] [Related]
38. Effects of Syzygium aromaticum-derived triterpenes on postprandial blood glucose in streptozotocin-induced diabetic rats following carbohydrate challenge. Khathi A; Serumula MR; Myburg RB; Van Heerden FR; Musabayane CT PLoS One; 2013; 8(11):e81632. PubMed ID: 24278452 [TBL] [Abstract][Full Text] [Related]
39. Blood glucose-lowering effect of Tectona grandis flowers in type 2 diabetic rats: a study on identification of active constituents and mechanisms for antidiabetic action. Ramachandran S; Rajasekaran A J Diabetes; 2014 Sep; 6(5):427-37. PubMed ID: 24393489 [TBL] [Abstract][Full Text] [Related]
40. In Vitro Alpha-Amylase and Alpha-Glucosidase Inhibitory Activity and In Vivo Antidiabetic Activity of Mechchate H; Es-Safi I; Louba A; Alqahtani AS; Nasr FA; Noman OM; Farooq M; Alharbi MS; Alqahtani A; Bari A; Bekkari H; Bousta D Molecules; 2021 Jan; 26(2):. PubMed ID: 33430115 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]