These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

585 related articles for article (PubMed ID: 27454445)

  • 21. Fusion of SpCas9 to E. coli Rec A protein enhances CRISPR-Cas9 mediated gene knockout in mammalian cells.
    Lin L; Petersen TS; Jensen KT; Bolund L; Kühn R; Luo Y
    J Biotechnol; 2017 Apr; 247():42-49. PubMed ID: 28259533
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cas9-assisted recombineering in C. elegans: genome editing using in vivo assembly of linear DNAs.
    Paix A; Schmidt H; Seydoux G
    Nucleic Acids Res; 2016 Sep; 44(15):e128. PubMed ID: 27257074
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolic engineering of Escherichia coli BL21 strain using simplified CRISPR-Cas9 and asymmetric homology arms recombineering.
    Shukal S; Lim XH; Zhang C; Chen X
    Microb Cell Fact; 2022 Feb; 21(1):19. PubMed ID: 35123478
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient oligo nucleotide mediated CRISPR-Cas9 gene editing in Aspergilli.
    Nødvig CS; Hoof JB; Kogle ME; Jarczynska ZD; Lehmbeck J; Klitgaard DK; Mortensen UH
    Fungal Genet Biol; 2018 Jun; 115():78-89. PubMed ID: 29325827
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recombination-Independent Genome Editing through CRISPR/Cas9-Enhanced TargeTron Delivery.
    Velázquez E; Lorenzo V; Al-Ramahi Y
    ACS Synth Biol; 2019 Sep; 8(9):2186-2193. PubMed ID: 31419111
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chemical transformation mediated CRISPR/Cas9 genome editing in Escherichia coli.
    Sun D; Wang L; Mao X; Fei M; Chen Y; Shen M; Qiu J
    Biotechnol Lett; 2019 Feb; 41(2):293-303. PubMed ID: 30547274
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Research progress in the third-generation genomic editing technology - CRISPR/Cas9].
    Zhou Y; Zong Y; Kong X
    Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2016 Oct; 33(5):713-6. PubMed ID: 27577230
    [TBL] [Abstract][Full Text] [Related]  

  • 28. TALEN- and CRISPR-enhanced DNA homologous recombination for gene editing in zebrafish.
    Zhang Y; Huang H; Zhang B; Lin S
    Methods Cell Biol; 2016; 135():107-20. PubMed ID: 27443922
    [TBL] [Abstract][Full Text] [Related]  

  • 29. One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces.
    Huang H; Zheng G; Jiang W; Hu H; Lu Y
    Acta Biochim Biophys Sin (Shanghai); 2015 Apr; 47(4):231-43. PubMed ID: 25739462
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A two-plasmid inducible CRISPR/Cas9 genome editing tool for Clostridium acetobutylicum.
    Wasels F; Jean-Marie J; Collas F; López-Contreras AM; Lopes Ferreira N
    J Microbiol Methods; 2017 Sep; 140():5-11. PubMed ID: 28610973
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CRISPR-Cas targeted plasmid integration into mammalian cells via non-homologous end joining.
    Bachu R; Bergareche I; Chasin LA
    Biotechnol Bioeng; 2015 Oct; 112(10):2154-62. PubMed ID: 25943095
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Next Generation Prokaryotic Engineering: The CRISPR-Cas Toolkit.
    Mougiakos I; Bosma EF; de Vos WM; van Kranenburg R; van der Oost J
    Trends Biotechnol; 2016 Jul; 34(7):575-587. PubMed ID: 26944793
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exploring the potential of genome editing CRISPR-Cas9 technology.
    Singh V; Braddick D; Dhar PK
    Gene; 2017 Jan; 599():1-18. PubMed ID: 27836667
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improving the Editing Efficiency of CRISPR-Cas9 by Reducing the Generation of Escapers Based on the Surviving Mechanism.
    Li Q; Sun M; Lv L; Zuo Y; Zhang S; Zhang Y; Yang S
    ACS Synth Biol; 2023 Mar; 12(3):672-680. PubMed ID: 36867054
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of a marker recyclable CRISPR/Cas9 system for scarless and multigene editing in Fusarium fujikuroi.
    Huang L; Li N; Song Y; Gao J; Nian L; Zhou J; Zhang B; Liu Z; Zheng Y
    Biotechnol J; 2024 Jul; 19(7):e2400164. PubMed ID: 39014928
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Targeted genome editing in the rare actinomycete Actinoplanes sp. SE50/110 by using the CRISPR/Cas9 System.
    Wolf T; Gren T; Thieme E; Wibberg D; Zemke T; Pühler A; Kalinowski J
    J Biotechnol; 2016 Aug; 231():122-128. PubMed ID: 27262504
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancing CRISPR/Cas9-mediated homology-directed repair in mammalian cells by expressing Saccharomyces cerevisiae Rad52.
    Shao S; Ren C; Liu Z; Bai Y; Chen Z; Wei Z; Wang X; Zhang Z; Xu K
    Int J Biochem Cell Biol; 2017 Nov; 92():43-52. PubMed ID: 28928041
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A CRISPR-Cas9 Assisted Non-Homologous End-Joining Strategy for One-step Engineering of Bacterial Genome.
    Su T; Liu F; Gu P; Jin H; Chang Y; Wang Q; Liang Q; Qi Q
    Sci Rep; 2016 Nov; 6():37895. PubMed ID: 27883076
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multiple-step chromosomal integration of divided segments from a large DNA fragment via CRISPR/Cas9 in Escherichia coli.
    Li Y; Yan F; Wu H; Li G; Han Y; Ma Q; Fan X; Zhang C; Xu Q; Xie X; Chen N
    J Ind Microbiol Biotechnol; 2019 Jan; 46(1):81-90. PubMed ID: 30470963
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CRISPR-Cas9: from Genome Editing to Cancer Research.
    Chen S; Sun H; Miao K; Deng CX
    Int J Biol Sci; 2016; 12(12):1427-1436. PubMed ID: 27994508
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.