These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
585 related articles for article (PubMed ID: 27454445)
41. Rheostatic Control of Cas9-Mediated DNA Double Strand Break (DSB) Generation and Genome Editing. Rose JC; Stephany JJ; Wei CT; Fowler DM; Maly DJ ACS Chem Biol; 2018 Feb; 13(2):438-442. PubMed ID: 28895730 [TBL] [Abstract][Full Text] [Related]
42. Development of a fast and easy method for Escherichia coli genome editing with CRISPR/Cas9. Zhao D; Yuan S; Xiong B; Sun H; Ye L; Li J; Zhang X; Bi C Microb Cell Fact; 2016 Dec; 15(1):205. PubMed ID: 27908280 [TBL] [Abstract][Full Text] [Related]
43. Combination of ssDNA recombineering and CRISPR-Cas9 for Pseudomonas putida KT2440 genome editing. Wu Z; Chen Z; Gao X; Li J; Shang G Appl Microbiol Biotechnol; 2019 Mar; 103(6):2783-2795. PubMed ID: 30762073 [TBL] [Abstract][Full Text] [Related]
44. Gene editing by SSB/CRISPR-Cas9 ribonucleoprotein in bacteria. Chai R; Sun W; Xu Z; Yao X; Chen S; Wang H; Guo J; Zhang Q; Yang Y; Li T; Chen S; Qiu L Int J Biol Macromol; 2024 Oct; 278(Pt 4):135065. PubMed ID: 39187111 [TBL] [Abstract][Full Text] [Related]
45. CRISPR-Cas9/CRISPRi tools for cell factory construction in E. coli. Hashemi A World J Microbiol Biotechnol; 2020 Jun; 36(7):96. PubMed ID: 32583135 [TBL] [Abstract][Full Text] [Related]
46. CRISPR/Cas9-based efficient genome editing in Staphylococcus aureus. Liu Q; Jiang Y; Shao L; Yang P; Sun B; Yang S; Chen D Acta Biochim Biophys Sin (Shanghai); 2017 Sep; 49(9):764-770. PubMed ID: 28910979 [TBL] [Abstract][Full Text] [Related]
47. Efficient and Precise Genome Editing in Corts AD; Thomason LC; Gill RT; Gralnick JA ACS Synth Biol; 2019 Aug; 8(8):1877-1889. PubMed ID: 31277550 [TBL] [Abstract][Full Text] [Related]
48. A novel Bxb1 integrase RMCE system for high fidelity site-specific integration of mAb expression cassette in CHO Cells. Inniss MC; Bandara K; Jusiak B; Lu TK; Weiss R; Wroblewska L; Zhang L Biotechnol Bioeng; 2017 Aug; 114(8):1837-1846. PubMed ID: 28186334 [TBL] [Abstract][Full Text] [Related]
49. Site-Specific Integration of Exogenous Genes Using Genome Editing Technologies in Zebrafish. Kawahara A; Hisano Y; Ota S; Taimatsu K Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27187373 [TBL] [Abstract][Full Text] [Related]
50. Kinetics and Fidelity of the Repair of Cas9-Induced Double-Strand DNA Breaks. Brinkman EK; Chen T; de Haas M; Holland HA; Akhtar W; van Steensel B Mol Cell; 2018 Jun; 70(5):801-813.e6. PubMed ID: 29804829 [TBL] [Abstract][Full Text] [Related]
51. Expanding the Potential of Mammalian Genome Engineering Zhang M; Yang C; Tasan I; Zhao H ACS Synth Biol; 2021 Mar; 10(3):429-446. PubMed ID: 33596056 [TBL] [Abstract][Full Text] [Related]
52. Single-Stranded DNA-Binding Proteins Mediate DSB Repair and Effectively Improve CRISPR/Cas9 Genome Editing in Chai R; Zhang Q; Wu J; Shi Z; Li Y; Gao Y; Qi Y; Qiu L Microorganisms; 2023 Mar; 11(4):. PubMed ID: 37110272 [TBL] [Abstract][Full Text] [Related]
53. In vitro CRISPR-Cas9-mediated efficient Ad5 vector modification. Tang L; Gong M; Zhang P Biochem Biophys Res Commun; 2016 May; 474(2):395-399. PubMed ID: 27125457 [TBL] [Abstract][Full Text] [Related]
54. CRISPR-Mediated Base Editing without DNA Double-Strand Breaks. Plosky BS Mol Cell; 2016 May; 62(4):477-8. PubMed ID: 27203175 [TBL] [Abstract][Full Text] [Related]
55. Highly efficient genome editing in N. gerenzanensis using an inducible CRISPR/Cas9-RecA system. Yue X; Xia T; Wang S; Dong H; Li Y Biotechnol Lett; 2020 Sep; 42(9):1699-1706. PubMed ID: 32314149 [TBL] [Abstract][Full Text] [Related]
56. Precise Genome Editing of Drosophila with CRISPR RNA-Guided Cas9. Gratz SJ; Harrison MM; Wildonger J; O'Connor-Giles KM Methods Mol Biol; 2015; 1311():335-48. PubMed ID: 25981484 [TBL] [Abstract][Full Text] [Related]
57. Genome Editing with CRISPR-Cas9 in Lactobacillus plantarum Revealed That Editing Outcomes Can Vary Across Strains and Between Methods. Leenay RT; Vento JM; Shah M; Martino ME; Leulier F; Beisel CL Biotechnol J; 2019 Mar; 14(3):e1700583. PubMed ID: 30156038 [TBL] [Abstract][Full Text] [Related]
58. Elevated expression of exogenous RAD51 enhances the CRISPR/Cas9-mediated genome editing efficiency. Park SJ; Yoon S; Choi EH; Hyeon H; Lee K; Kim KP BMB Rep; 2023 Feb; 56(2):102-107. PubMed ID: 36513383 [TBL] [Abstract][Full Text] [Related]
59. Efficient Cas9-based genome editing of Rhodobacter sphaeroides for metabolic engineering. Mougiakos I; Orsi E; Ghiffary MR; Post W; de Maria A; Adiego-Perez B; Kengen SWM; Weusthuis RA; van der Oost J Microb Cell Fact; 2019 Nov; 18(1):204. PubMed ID: 31767004 [TBL] [Abstract][Full Text] [Related]
60. Combining CRISPR and CRISPRi Systems for Metabolic Engineering of E. coli and 1,4-BDO Biosynthesis. Wu MY; Sung LY; Li H; Huang CH; Hu YC ACS Synth Biol; 2017 Dec; 6(12):2350-2361. PubMed ID: 28854333 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]