These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 27454465)

  • 1. Surface modification of oleylamine-capped Ag-Cu nanoparticles to fabricate low-temperature-sinterable Ag-Cu nanoink.
    Kim NR; Lee YJ; Lee C; Koo J; Lee HM
    Nanotechnology; 2016 Aug; 27(34):345706. PubMed ID: 27454465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of Conductive Copper Films on Flexible Polymer Substrates by Low-Temperature Sintering of Composite Cu Ink in Air.
    Kanzaki M; Kawaguchi Y; Kawasaki H
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20852-20858. PubMed ID: 28574247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Concentration Synthesis of Sub-10-nm Copper Nanoparticles for Application to Conductive Nanoinks.
    Hokita Y; Kanzaki M; Sugiyama T; Arakawa R; Kawasaki H
    ACS Appl Mater Interfaces; 2015 Sep; 7(34):19382-9. PubMed ID: 26287811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interface Modified Flexible Printed Conductive Films via Ag
    Meng Y; Ma T; Pavinatto FJ; MacKenzie JD
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9190-9196. PubMed ID: 30742404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cu-Ag core-shell nanoparticles with enhanced oxidation stability for printed electronics.
    Lee C; Kim NR; Koo J; Lee YJ; Lee HM
    Nanotechnology; 2015 Nov; 26(45):455601. PubMed ID: 26489391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solvent-free synthesis of monodisperse Cu nanoparticles by thermal decomposition of an oleylamine-coordinated Cu oxalate complex.
    Togashi T; Nakayama M; Hashimoto A; Ishizaki M; Kanaizuka K; Kurihara M
    Dalton Trans; 2018 Apr; 47(15):5342-5347. PubMed ID: 29589610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical/thermal behaviors of bimetallic (Ag-Cu, Ag-Sn) nanoparticles for printed electronics.
    Wang X; Huang F; Wang D; Li D; Li P; Muhammad J; Dong X; Zhang Z
    Nanotechnology; 2020 Mar; 31(13):135603. PubMed ID: 31816613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-Thermal-Budget Photonic Processing of Highly Conductive Cu Interconnects Based on CuO Nanoinks: Potential for Flexible Printed Electronics.
    Rager MS; Aytug T; Veith GM; Joshi P
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2441-8. PubMed ID: 26720684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formulation of Screen-Printable Cu Molecular Ink for Conductive/Flexible/Solderable Cu Traces.
    Deore B; Paquet C; Kell AJ; Lacelle T; Liu X; Mozenson O; Lopinski G; Brzezina G; Guo C; Lafrenière S; Malenfant PRL
    ACS Appl Mater Interfaces; 2019 Oct; 11(42):38880-38894. PubMed ID: 31550883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term dispersion stability and adhesion promotion of aqueous Cu nano-ink for flexible printed electronics.
    Seo YH; Jeong S; Jo Y; Choi Y; Ryu BH; Han G; Lee M
    J Nanosci Nanotechnol; 2013 Aug; 13(8):5661-4. PubMed ID: 23882813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of Hybrid Ink Formulation and IPL Sintering Process for Ink-Jet 3D Printing.
    Lee JY; Choi CS; Hwang KT; Han KS; Kim JH; Nahm S; Kim BS
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34069153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cu ion ink for a flexible substrate and highly conductive patterning by intensive pulsed light sintering.
    Wang BY; Yoo TH; Song YW; Lim DS; Oh YJ
    ACS Appl Mater Interfaces; 2013 May; 5(10):4113-9. PubMed ID: 23586602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Morphology on the Electrical Resistivity of Silver Nanostructure Films.
    Stewart IE; Kim MJ; Wiley BJ
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1870-1876. PubMed ID: 27981831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nano-Silver Ink of High Conductivity and Low Sintering Temperature for Paper Electronics.
    Mo L; Guo Z; Wang Z; Yang L; Fang Y; Xin Z; Li X; Chen Y; Cao M; Zhang Q; Li L
    Nanoscale Res Lett; 2019 Jun; 14(1):197. PubMed ID: 31172304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene-Ag nanohexagonal platelets-based ink with high electrical properties at low sintering temperatures.
    Liu P; Ma J; Deng S; Zeng K; Deng D; Xie W; Lu A
    Nanotechnology; 2016 Sep; 27(38):385603. PubMed ID: 27518607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-temperature preparation of highly conductive thin films from acrylic acid-stabilized silver nanoparticles prepared through ligand exchange.
    Vo DQ; Shin EW; Kim JS; Kim S
    Langmuir; 2010 Nov; 26(22):17435-43. PubMed ID: 20919702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and characterization of low temperature Sn nanoparticles for the fabrication of highly conductive ink.
    Jo YH; Jung I; Choi CS; Kim I; Lee HM
    Nanotechnology; 2011 Jun; 22(22):225701. PubMed ID: 21454937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Oxalic Acid Treatment on Conductive Coatings Formed by Ni@Ag Core-Shell Nanoparticles.
    Pajor-Świerzy A; Pawłowski R; Sobik P; Kamyshny A; Szczepanowicz K
    Materials (Basel); 2022 Jan; 15(1):. PubMed ID: 35009452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly conductive copper nano/microparticles ink via flash light sintering for printed electronics.
    Joo SJ; Hwang HJ; Kim HS
    Nanotechnology; 2014 Jul; 25(26):265601. PubMed ID: 24916116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-temperature sintering of silver nanoparticles on paper by surface modification.
    Zhang L; Feng P; Xie S; Wang Y; Ye Z; Fu Z; Wang Q; Ma X; Zhang J; He P; Li K; Zhao W
    Nanotechnology; 2019 Dec; 30(50):505303. PubMed ID: 31509803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.