BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 2745472)

  • 1. Biomechanical experiments on excised myocardium: theoretical considerations.
    Humphrey JD; Yin FC
    J Biomech; 1989; 22(4):377-83. PubMed ID: 2745472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of a constitutive relation for passive myocardium: I. A new functional form.
    Humphrey JD; Strumpf RK; Yin FC
    J Biomech Eng; 1990 Aug; 112(3):333-9. PubMed ID: 2214717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of a constitutive relation for passive myocardium: II. Parameter estimation.
    Humphrey JD; Strumpf RK; Yin FC
    J Biomech Eng; 1990 Aug; 112(3):340-6. PubMed ID: 2214718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of Shear Deformations and Corresponding Stresses in the Biaxially Tested Human Myocardium.
    Sommer G; Haspinger DCh; Andrä M; Sacherer M; Viertler C; Regitnig P; Holzapfel GA
    Ann Biomed Eng; 2015 Oct; 43(10):2334-48. PubMed ID: 25707595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constitutive relations and finite deformations of passive cardiac tissue II: stress analysis in the left ventricle.
    Humphrey JD; Yin FC
    Circ Res; 1989 Sep; 65(3):805-17. PubMed ID: 2766492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On constitutive relations and finite deformations of passive cardiac tissue: I. A pseudostrain-energy function.
    Humphrey JD; Yin FC
    J Biomech Eng; 1987 Nov; 109(4):298-304. PubMed ID: 3695429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of the mechanical properties of noncontracting canine myocardium under simultaneous biaxial loading.
    Yin FC; Strumpf RK; Chew PH; Zeger SL
    J Biomech; 1987; 20(6):577-89. PubMed ID: 3611134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural three-dimensional constitutive law for the passive myocardium.
    Horowitz A; Lanir Y; Yin FC; Perl M; Sheinman I; Strumpf RK
    J Biomech Eng; 1988 Aug; 110(3):200-7. PubMed ID: 3172739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Passive material properties of intact ventricular myocardium determined from a cylindrical model.
    Guccione JM; McCulloch AD; Waldman LK
    J Biomech Eng; 1991 Feb; 113(1):42-55. PubMed ID: 2020175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epicardial suction: a new approach to mechanical testing of the passive ventricular wall.
    Okamoto RJ; Moulton MJ; Peterson SJ; Li D; Pasque MK; Guccione JM
    J Biomech Eng; 2000 Oct; 122(5):479-87. PubMed ID: 11091948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constitutive modelling of passive myocardium: a structurally based framework for material characterization.
    Holzapfel GA; Ogden RW
    Philos Trans A Math Phys Eng Sci; 2009 Sep; 367(1902):3445-75. PubMed ID: 19657007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of boundary conditions on the estimation of the planar biaxial mechanical properties of soft tissues.
    Sun W; Sacks MS; Scott MJ
    J Biomech Eng; 2005 Aug; 127(4):709-15. PubMed ID: 16121542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constitutive stress--strain relations for the myocardium in diastole.
    Moskowitz SE
    J Biomech; 1985; 18(3):177-87. PubMed ID: 3997902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite extension and torsion of papillary muscles: a theoretical framework.
    Humphrey JD; Barazotto RL; Hunter WC
    J Biomech; 1992 May; 25(5):541-7. PubMed ID: 1592859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Passive biaxial mechanical properties of isolated canine myocardium.
    Demer LL; Yin FC
    J Physiol; 1983 Jun; 339():615-30. PubMed ID: 6887039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biaxial stress-strain properties of canine pericardium.
    Chew PH; Yin FC; Zeger SL
    J Mol Cell Cardiol; 1986 Jun; 18(6):567-78. PubMed ID: 3735439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multiaxial constitutive law for mammalian left ventricular myocardium in steady-state barium contracture or tetanus.
    Lin DH; Yin FC
    J Biomech Eng; 1998 Aug; 120(4):504-17. PubMed ID: 10412422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A theoretically-based experimental approach for identifying vascular constitutive relations.
    Humphrey JD; Strumpf RK; Yin FC
    Biorheology; 1989; 26(4):687-702. PubMed ID: 2611364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of fiber dispersion on the mechanical response of aortic tissues in health and disease: a computational study.
    Niestrawska JA; Ch Haspinger D; Holzapfel GA
    Comput Methods Biomech Biomed Engin; 2018 Feb; 21(2):99-112. PubMed ID: 29436874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microtubule involvement in the adaptation to altered mechanical load in developing chick myocardium.
    Schroder EA; Tobita K; Tinney JP; Foldes JK; Keller BB
    Circ Res; 2002 Aug; 91(4):353-9. PubMed ID: 12193469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.