These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 2745473)
1. Effects of grid dimensions on finite element models of an articular surface. Galbraith PC; Bryant JT J Biomech; 1989; 22(4):385-93. PubMed ID: 2745473 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of the finite element software ABAQUS for biomechanical modelling of biphasic tissues. Wu JZ; Herzog W; Epstein M J Biomech; 1998 Feb; 31(2):165-9. PubMed ID: 9593211 [TBL] [Abstract][Full Text] [Related]
3. Normal contact of elastic spheres with two elastic layers as a model of joint articulation. Eberhardt AW; Lewis JL; Keer LM J Biomech Eng; 1991 Nov; 113(4):410-7. PubMed ID: 1762438 [TBL] [Abstract][Full Text] [Related]
4. A finite element model of an idealized diarthrodial joint to investigate the effects of variation in the mechanical properties of the tissues. Dar FH; Aspden RM Proc Inst Mech Eng H; 2003; 217(5):341-8. PubMed ID: 14558646 [TBL] [Abstract][Full Text] [Related]
5. An analytical model of joint contact. Eberhardt AW; Keer LM; Lewis JL; Vithoontien V J Biomech Eng; 1990 Nov; 112(4):407-13. PubMed ID: 2273867 [TBL] [Abstract][Full Text] [Related]
6. A finite element study of stress distributions in normal and osteoarthritic knee joints. Chantarapanich N; Nanakorn P; Chernchujit B; Sitthiseripratip K J Med Assoc Thai; 2009 Dec; 92 Suppl 6():S97-103. PubMed ID: 20120670 [TBL] [Abstract][Full Text] [Related]
7. Application of the u-p finite element method to the study of articular cartilage. Wayne JS; Woo SL; Kwan MK J Biomech Eng; 1991 Nov; 113(4):397-403. PubMed ID: 1762436 [TBL] [Abstract][Full Text] [Related]
8. Multiphoton microscope measurement-based biphasic multiscale analyses of knee joint articular cartilage and chondrocyte by using visco-anisotropic hyperelastic finite element method and smoothed particle hydrodynamics method. Nakamachi E; Noma T; Nakahara K; Tomita Y; Morita Y Int J Numer Method Biomed Eng; 2017 Nov; 33(11):. PubMed ID: 28058781 [TBL] [Abstract][Full Text] [Related]
9. Biphasic finite element modeling of hydrated soft tissue contact using an augmented Lagrangian method. Guo H; Spilker RL J Biomech Eng; 2011 Nov; 133(11):111001. PubMed ID: 22168733 [TBL] [Abstract][Full Text] [Related]
10. Finite element analysis of the meniscectomised tibio-femoral joint: implementation of advanced articular cartilage models. Mattei L; Campioni E; Accardi MA; Dini D Comput Methods Biomech Biomed Engin; 2014; 17(14):1553-71. PubMed ID: 23452160 [TBL] [Abstract][Full Text] [Related]
11. Importance of depth-wise distribution of collagen and proteoglycans in articular cartilage--a 3D finite element study of stresses and strains in human knee joint. Halonen KS; Mononen ME; Jurvelin JS; Töyräs J; Korhonen RK J Biomech; 2013 Apr; 46(6):1184-92. PubMed ID: 23384762 [TBL] [Abstract][Full Text] [Related]
12. Importance of material properties and porosity of bone on mechanical response of articular cartilage in human knee joint--a two-dimensional finite element study. Venäläinen MS; Mononen ME; Jurvelin JS; Töyräs J; Virén T; Korhonen RK J Biomech Eng; 2014 Dec; 136(12):121005. PubMed ID: 25322202 [TBL] [Abstract][Full Text] [Related]
13. Congruency effects on load bearing in diarthrodial joints. Adeeb SM; Sayed Ahmed EY; Matyas J; Hart DA; Frank CB; Shrive NG Comput Methods Biomech Biomed Engin; 2004 Jun; 7(3):147-57. PubMed ID: 15512758 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of a subject-specific finite-element model of the equine metacarpophalangeal joint under physiological load. Harrison SM; Whitton RC; Kawcak CE; Stover SM; Pandy MG J Biomech; 2014 Jan; 47(1):65-73. PubMed ID: 24210848 [TBL] [Abstract][Full Text] [Related]
15. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes. Spilker RL; de Almeida ES; Donzelli PS Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094 [TBL] [Abstract][Full Text] [Related]
16. A finite element implementation for biphasic contact of hydrated porous media under finite deformation and sliding. Guo H; Shah M; Spilker RL Proc Inst Mech Eng H; 2014 Mar; 228(3):225-36. PubMed ID: 24496915 [TBL] [Abstract][Full Text] [Related]
17. Effects of friction on the unconfined compressive response of articular cartilage: a finite element analysis. Spilker RL; Suh JK; Mow VC J Biomech Eng; 1990 May; 112(2):138-46. PubMed ID: 2345443 [TBL] [Abstract][Full Text] [Related]
18. Effects of inserting a pressensor film into articular joints on the actual contact mechanics. Wu JZ; Herzog W; Epstein M J Biomech Eng; 1998 Oct; 120(5):655-9. PubMed ID: 10412445 [TBL] [Abstract][Full Text] [Related]
19. Compressive properties of mouse articular cartilage determined in a novel micro-indentation test method and biphasic finite element model. Cao L; Youn I; Guilak F; Setton LA J Biomech Eng; 2006 Oct; 128(5):766-71. PubMed ID: 16995764 [TBL] [Abstract][Full Text] [Related]